Journal is indexed in following databases:
- SCOPUS
- Web of Science Core Collection - Journal Citation Reports
- EBSCOhost
- Directory of Open Access Journals
- TRID Database - Transportation Research Board
- Index Copernicus Journals Master List
- BazTech
- Google Scholar
2023 Journal Impact Factor - 0.7
2023 CiteScore - 1.4
ISSN 2083-6473
ISSN 2083-6481 (electronic version)
Editor-in-Chief
Associate Editor
Prof. Tomasz Neumann
Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
e-mail transnav@umg.edu.pl
Review of Ocean Wave’s Uncertainties for Navigators
1 University of Zagreb, Zagreb, Croatia
ABSTRACT: The uncertainties of marine environments lastingly challenge navigation and safety of sea transportation. Therefore, the article tackles the extraction, assessment, and analysis as well as the perceptive presentations of probabilistic uncertainties of the random wind waves ocean-wide. The link of the probabilistic uncertainties and statistical variabilities is accomplished in the article by using the reported Global Wave Statistics of coherent and controlled wind wave data visually observed from ships in normal service. The probabilistic uncertainty is defined in the information theory most coherently with the human experience of randomness by the information entropy. The article reveals expressions, tables, graphs, and charts of information entropy which objectively express the uncertainties of observed wind wave directions, heights, and periods in all principal ocean areas. The combinations of areal entropy provide uncertainties of wider ocean zones, sectors, and shipping routes for the assessment of all-around exposures of ships and other objects in service at seas to random wind wave effects appropriately to sea-men’s experience of randomness.
KEYWORDS: Maritime Safety, Oceanography, Navigation systems, Wind Waves, Wave Height, Environmental Data, Statistical Analysis, Information Theory
REFERENCES
Aczel, J. and Daroczy, Z. (1975). On Measures of Information and Their Characterization, Acad. Press, NY.
Bitner-Gregersen, E.M. and Cramer, E.H. (1994). Accuracy of the Global Wave Statistics Data, Proceedings of the Fourth International Offshore and Polar Engineering Conference, Osaka, Japan. http://publications.isope.org/proceedings/ISOPE/ISOPE%201994/Abstract%20Pages/I94v3p058.pdf.
Global wave statistics BMT http://www.globalwavestatisticsonline.com/ (accessed March 2023).
Choi Y. H. and Hirayama, T. (2000). Interrelationship Among the Long-Term Wave Data Bases. For the Unification of Wave Data Bases (in Japanese), Journal of the Society of Naval Architects of Japan, Vol.No. 188, pp 239-250. - doi:10.2534/jjasnaoe1968.2000.188_239
Fisher, N.I. (1993): Statistical Analysis of Circular Data, Cambridge University Press. - doi:10.1017/CBO9780511564345
Cover, A. and Thomas, J.A. (2006) Elements of Information Theory. Wiley-Interscience, Hoboken, 2 edition.
Hartley, R. V. (1928). Transmission of Information, Bell Systems Tech. J, 7. - doi:10.1002/j.1538-7305.1928.tb01236.x
Hogben, N., N. M .C. Dacunha and G. F. Olliver 1986. Global Wave Statistics, British Maritime Technology Ltd., Feltham.
Khinchin, A. I. (1957). Mathematical Foundations of Information Theory, Dover Publications, NY.
Klir, G. J. and Wierman, M. J. 1999. Uncertainty-Based Information, Springer-Verlag Berlin, Heidelberg GmbH. - doi:10.1007/978-3-7908-1869-7
Nielsen U.D. and Ikonomakis, A. (2021). Wave conditions encountered by ships—A report from a larger shipping company based on ERA5, Ocean Engineering, 237, - doi:10.1016/j.oceaneng.2021.109584
Renyi, A. (1970). Probability Theory, North-Holland, Amsterdam.
Shannon, C. E. and Weaver, W. (1949). The Mathematical Theory of Communication, Urbana Univ. Illinois.
Shinkai, A. and Wan, S., (1996). Statistical characteristics of the global wave statistics data and long-term predictions. United States: N. p., 1996. https://www.osti.gov/biblio/455449-statistical-characteristics-global-wave-statistics-data-long-term-predictions.
Taylor, D. (1990). Uncertainty in Collision Avoidance Manoeuvring. Journal of Navigation, 43(2), 238-245. doi:10.1017/S0373463300009577 - doi:10.1017/S0373463300009577
Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics, J Stat Phys 52. - doi:10.1007/BF01016429
Vettor, R., Bergamini, G. and Guedes Soares, C. (2021) A Comprehensive Approach to Account for Weather Uncertainties in Ship Route Optimization. J. Mar. Sci. Eng. 2021, 9, 1434. - doi:10.3390/jmse9121434
Wiener, N. (1948). Cybernetic, or Control and Communication, Bell System Tech. J, 27.
Young, I. R. and Holland G. J. (1996). Atlas of the oceans: wind and wave climate, Pergamon.
Ziha, K. (2000). Event Oriented System Analysis, Probabilistic Eng. Mech., 15 (3). - doi:10.1016/S0266-8920(99)00025-9
Ziha, K. (2007). Entropy of marginal distributions, In: Luzar-Stiefler V, Hljuz Dobrić V, editors Proceedings of the 29th International Conference on Information Technology Interfaces; IEEE Catalog Number 07EX1589C; Cavtat, Croatia. Zagreb: SRCE University Computing Centre, University of Zagreb.
Ziha, K. (2010) Effects of Loading Fields on Marine Objects, Journal of Ship Production, 26 (4). pp. 252-264. - doi:10.5957/jspd.2010.26.4.252
Ziha, K. (2013). Statistical variability vs. probabilistic uncertainty In: Luzar-Stiefler V, Hljuz Dobrić V, editors Proceedings of the 29th International Conference on Information Technology Interfaces; IEEE Catalog Number 07EX1589C; Cavtat, Croatia. Zagreb: SRCE University Computing Centre, University of Zagreb.
Ziha, K. (2022). Uncertainty of Integral System Safety in Engineering, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 8(2), - doi:10.1115/1.4051939
Citation note:
Kalman Z.: Review of Ocean Wave’s Uncertainties for Navigators. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 18, No. 4, doi:10.12716/1001.18.04.13, pp. 873-882, 2024
Authors in other databases:
Žiha Kalman:
orcid.org/0000-0002-4282-7423
G43KaYIAAAAJ