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1 INTRODUCTION 

The article considers the relevance of the information 
theory for the presentation of aleatory uncertainties of 
observable random wind wave properties. The study 
entrusts in the sequel on the information entropy 
measure for environmental probabilistic uncertainty 
assessment as well as on the Global Wave Statistics [8] 
(GWS) (Hogben, Dacunha, and Olliver, 1986) and 
online [3] BMT databases (2021). The article 
demonstrates in the sequel how to derive the 
information entropy from all tabulated annual and 
seasonal GWS ocean areas. The wave data sets contain 
observed frequencies of wave heights and periods for 
all principal wave directions. At the end, the results 
and examples are presented in the article by 
mathematical expressions, tables, graphs, and charts.  

The article at the beginning refers to the 
information entropy concept that emerged earlier in 
the information theory [7,18,13] (Hartley, 1928; 
Wiener, 1948; Shannon & Weaver, 1949). The 
information entropy was generalized later in the 
probability theory as the probabilistic uncertainty 
measure [9,12,1,16] (Khinchin, 1957; Renyi, 1970; 
Aczel and Daroczy, 1975; Tsallis, 1988) and also 
recognized as information based on uncertainty [10] 
(Klir and Wierman, 1999). The usefulness of the 
information entropy concept in the probability theory 
for objective uncertainty assessment of various 
systems of random events in engineering and 
elsewhere was investigated earlier [20] Ziha (2000a). 
The information entropy may also appropriately 
express the redundancy and robustness of different 
operational and failure system states [20] Ziha 
(2000b). The entropy of marginal distributions was 
earlier considered for the uncertainty assessment of 
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ocean wind waves [21] (Ziha, 2007). The probabilistic 
uncertainty can also be perceptively presented by 
average numbers of events or outcomes closer to the 
experience of gambling [23] (Ziha, 2013). More 
recently the information theory was applied to 
assessments of integral system safety in engineering 
[24] (Ziha, 2022).  

Additional information to mere statistics of ocean 
wind waves provide a novel prospect for more 
objective assessments of the effects of uncertainties of 
maritime environments on ships and other ocean 
objects, structures and vessels. 

2 SETS OF OBSERVATIONS OF RANDOM 
EVENTS 

A discrete distribution PN of N probabilities pi, i=1,2, 
...,N of outcomes of random events is presented as: 

( )1 2, , ,= N Np p pP  (1) 

Distributions of N probabilities PN (1) can also be 
interpreted as systems SN of N random events Ei with 
probabilities pi, i=1,2, ...,N.  

The disjoint random events Ej configure a system 
SN that can be written in a form of an N-element finite 
scheme (Khinchin, 1957) as follows: 

( ) ( ) ( ) ( )

1 2

1 2

  
=  

  
 

j N

N

j N

E E E E

p E p E p E p E
S  (2) 

The probability of N probabilities PN (1) of a 
distribution or of a system of N events SN (2) is then: 

1

( ) ( ) 1
=

= 
N

N N i

i

p or p pP S  (3) 

In (3), for complete distributions is ( ) 1=Np P  and 
for complete systems is ( ) 1=Np S . 

3 VARIABILITY OF PROBABILITY 
DISTRIBUTIONS 

Variability of a single random outcome of a 
probability distribution (1) can be experienced by an 
equivalent number  i  of outcomes with 
hypothetically equal probabilities pi out of N possible 
in system SN as defined: 

( ) ( ) / 1/ = =i N i ip p p pP  (4) 

The following terms related to variability apply 
both for partial and complete distributions PN (1) (3). 

The mean value of a probability distribution PN (1) 
is by definition: 

( ) (1/ ) ( ) 1/= =  =N N Np p N p NP P  (5) 

The statistical variability of N probabilities pi of a 
distribution PN (1) is given by the average variance 
VN(P): 

2 2 2 2

1 1

( ) ( ) (1/ ) ( ) (1/ )
= =

= =  − =  − 
N N

N N i N i N

i i

V N p p N p pP P
 (6) 

The standard deviation of probabilities of 
distribution of probabilities using (6) is then: 

( ) ( ) =N NVP P  (7) 

The reference value of variance can be calculated 
(Ziha, 2013) as the limiting value of (6) under the 
condition that one probability ( )→j Np p P  is 
dominant and all the others 0

i j
p


→  are 

vanishing: 

2 2

Ref ( ) ( ) ( 1) / ( 1) /=  − = −N NV p N N N NP P  (8) 

The coefficient of variation of N probabilities of a 
distribution PN (1) from (5 and 7) (Table 1) is: 

( ) ( ) / ( ) = = N N N NCV p NP P P  (9) 

The reference value of the coefficient of variation 
follows from (9) as shown: 

Ref ( ) ( ) ( 1) 1=  − = −NCV p N NP P  (10) 

4 INFORMATION ENTROPY OF SYSTEMS OF 
EVENTS 

The information entropy of a single event Ei in a 
system SN (2) can be interpreted according to [18] 
Wiener (1948) either as a measure of the information 
yielded by the event or how unexpected the event was 
and can be defined based on the equivalent number of 
outcomes (4) ( ) ip  as follows: 

 2 2 2( ) ( ) log ( ) log 1/ log = = = = −i i i i iE H E p p p  (11) 

The information based on the uncertainty of a 
complete system SN (2) of N events is the weighted 
sum of the unexpectednesses (11) expressed by the 
Shannon’s entropy [13] (Shannon and Weaver, 1949) 
(Table 1): 

1 1

( ) log
= =

=  = − 
N N

N j j j j

j j

H p p pS  (12) 

Shannon's entropy (12) has properties of 
uncertainty: continuity in its arguments, monotonic 
increase with a number of equiprobable outcomes and 
a composition rule [6] (Cover and Thomas, 2006). The 
information based on the uncertainty of an incomplete 
system SN (2) can be defined as the limiting case of 
the Renyi’s entropy of order one (Renyi, 1970), using 
the probability of a system of event (3) and definition 
of the Shannon's entropy: 
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Tsallis (1988) extended the information entropy 
formalism to the [12] Renyi’s entropy (1970) (13) of 
order one. 

Shannon's axiomatic derivation explains [13] (1949) 
why the entropy is an intuitive measure of 
uncertainty. The uniqueness theorem by [9] Khinchin 
(1957) states that the information entropy is the only 
function that measures the probabilistic uncertainty in 
agreement with experience. 

Let us consider system S of L subsystems of Li 
elements 

1 2( )= 
ii i i iLs s sS , i=1,2,…,Li (Ziha, 2000). 

The probabilities of ith subsystems are 

1 2( ) = + +
ii i i iLp s s sS  and the conditional information 

entropy of the system S concerning for the subsystems 
Si is as follows: 

1

( / ) log
( ) ( )=

= − 
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k i i

s s
H

p p
S S

S S

 (14) 

The information entropy of the system of 
subsystems 

1 2
' ( )

L
= S S S S  can be presented 

as shown: 

1

( ') ( ) log ( )
=

= − 
L

L i i

i

H p pS S S  (15) 

The theorem of mixture of distributions following 
[9] Khinchin (1957) and [12] Renyi (1970) provides the 
conditional information entropy of system S 
concerning for the system of subsystems S’ using (12-
15) (proof in APPENDIX B), as follows 
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The additional knowledge of subdivision of 
system S to subsystems S’ reduces unconditional 
information based on uncertainty (13) for an amount 
of (15). The incompleteness ( ) 1p S  increases the 
system uncertainty (16). Conditional information (16) 
of system S may be viewed as the average entropy of 
subsystems S’. 

The information entropy HN(S) is equal to zero 
when the state of the system S can be surely 
predicted, i.e., no uncertainty exists at all. This occurs 
when one of the probabilities of events pi, i=1,2,...,N is 
equal to one, let us say pk=1 and all other probabilities 
are equal to zero, pi=0, ik.  

The information entropy is maximal for uniform 
distribution of event probabilities when all the events 
are equally probable with the probability equal to pi= 
1/N, for i=1, 2, ..., N, and it amounts to HN(S)max=logN 
that is the [7] Hartley's entropy (1928). Hartley’s 
entropy relates to Renyi’s entropy of order 0.  

The entropy increases as the number of events 
increases. The entropy does not depend on the 

sequence of events. The definition of the unit of 
information based on uncertainty measure according 
to [12] Renyi (1970) is not more and not less arbitrary 
than the choice of the unit of some physical quantity.  

If the logarithm applied in (12-16) is of base two, 
the unit of information entropy is denoted as one "bit". 
One bit is the uncertainty of two equally probable 
events (a simple alternative) like flipping an ideal 
coin. If the natural logarithm is applied, the unit is one 
"nit". Relative measures for entropy hN(S)=HN(S)/logN 
may be useful. Interpretations of statistical variability 
vs. probabilistic uncertainty are given in Table 1. 

Table 1. Statistical variability vs. probabilistic uncertainty 
(information entropy) ________________________________________________ 
Variability (Statistics) ________________________________________________ 
Coefficient of variation of probabilities       (9) 

2

1
0 ( ) 1 1

=

=
 =  −  −

i N

N ii
CV N p NP  

Min: 0 – Fully invariable 
(All N outcomes equally probable) 
Max: 1−N  – Maximal variability 
(One sure outcome all N-1 others impossible) 
Unit: 1– (One sure, one impossible N=2) 
1/pi equivalent number of equiprobable random event ________________________________________________ 
Probabilistic uncertainty (Information theory) ________________________________________________ 
The information entropy of system       (12) 

, 1
0 ( ) log log

=

=
 = − 

i N

N b i b i bi
H p p NS  

Max: logb N  – Fully uncertain 
(All N events equally probable) 
Min: 0 – Maximal certainty 
(One certain event, N-1 impossible) 
Unit: 1 bit (2 equally probable events) 
-log pi unexpectedness of a random event ________________________________________________ 

4.1 Average numbers of events 

It was mentioned earlier that the average number of 
equally probable events provides the same 
information as the considered system of events [1] 
(Aczel and Daroczy, 1975). The average number of 
equally probable events FN(S) follows from the 
condition of maximal information 

2( ) log ( )=N NH FS S  of 
a system of N events with average probability 1/ ( )NF S  
as another perceptive uncertainty indicator defined as 
shown: 

( )
( ) 2= NH

NF
S

S  (17) 

Subsequently, uncertainties of random phenomena 
with arbitrary numbers of outcomes can be expressed 
by a number FN(SN) (17) of equally probable events or 
outcomes. Recursively, the entropy of base B of the 
average number FN(SN) (17) provides the entropy 
value of logB[FN(SN)]=HN(SN)logBN. 

Relative measures for the average number of 
events fN(S)=FN(SN)/N may be useful. It is commonly 
perceptive that flipping an ideal coin is as uncertain as 
two events with the same probabilities equal to 1/2 of 
a system S2=(1/2  12) with entropy H2(S2)max=log22=1 
bit and tossing a perfect die as six events with 
probabilities 1/6 of a system S6=(1/6   1/6   1/6   1/6   
1/6   1/6) with entropy H6(S6)max=log26=2.58 bits, 
which is equivalent to flipping of 2.58 coins. Since 
entropy (12-16) are, in general, real numbers, so are 
the average numbers of equally probable events FN(S) 
(17), providing continuous scales for interpretations of 
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uncertainties (Ziha, 2013). More generally, the 
information entropy n using a logarithm of base b 
provides average numbers bn of equally probable 
events (17) as gambling with n-sided ideal objects. 
Note how the numbers of equiprobable outcomes or 
events are generalized to not only integer values in a 
continuous scale. 

5 INFORMATION AND UNCERTAINTY OF THE 
GWS 

Visual observations of commercial ships have been 
archived since 1861. From 1961 the collection is 
systematized according to a resolution of the WMO. 
The compilation of these observations for each of the 
NA=104 Marsden’s squares (Appendix A, Fig. A1) is 
the Global Wave Statistics (GWS) [8] (Hogben, 
Dacunha and Olliver, 1986) that uses the past 
experiences to eliminate biases.  

An introductory example presents the information 
based on uncertainty and statistical variability of 
observed calm pcalm and wavy pwavy periods of sea 
states and unexpectedness  (11) (Table 2). 

The GWS integrated the wind/wave climate 
observations on the global level in scatter diagrams of 
joint distributions of wave heights against wind speed 
in terms of the Beaufort scale and separate sets of 
normalized wind frequencies. However, the GWS 
does not account for local climate conditions such as 
the size, the topography within/surrounding the 
region, the fetch, and ocean surface currents. Some of 
the local effects are directly or indirectly assessable 
from the attached GWS charts. Monthly frequency 
tables of wave heights and wind forces against the 
direction, together with information on ice conditions 
and the occurrences of tropical cyclones were used to 
decide upon seasonal subdivisions in the GWS. The 
advantages of GWS [4] (Choi and Hirayama, 2000) are 
the global approach, the duration of the collection 
period, and its suitability to maritime applications. 
The drawbacks are the lack of local wave/wind 
climate information particularly outside the oceanic 
areas, and the poor accuracy for periods, where 
heights are well estimated and enhanced by 
experienced observers. The accuracy of the Global 
Wave Statistics Data is checked with specific 
instruments [2] (Bitner-Gregersen and Cramer, 1994). 
The basic World Wide Waves Statistics (WWWS) 
consists of wave model time series for a great number 
of positions calibrated against Topex, Jason, or other 
satellite data such as the Atlas of the oceans: wind and 
wave climate from the GEOSAT satellite [19] (Young 
and Holland, 1996), The GWS often serves as a 
reference guide for wave data reported by other 
sources [11] (Nielsen and Ikonomakis, 2021). For long-
term predictions of ship responses in ocean a practical 
method for comparison of GWS with other wave data 
was proposed [14] (Shinkai and Wan, 1996). 

5.1 Uncertainties of GWS areas 

The GWS wave properties data sets A:s,d are available 
for each of 104 ocean area A and for Ns=4+1 annual 
and seasonal observations denoted s=(annual), March-
May, June-August, September-November, December-
February as well as for Nd=8+1 wave directions 
denoted d=(all), NW, N, NE, W, E, SW, S, SE. Each data 
set A:s,d,h,t present Nh=15 significant wave heights 
from 0 meters to 14 meters and Nt=11 zero-crossing 
wave periods from 4 seconds to 13 seconds, (for 
example Fig. 1 and Table 3 for A25:s=annnual,d=all). 

The GWS ocean wave data sets in tabular form 
contain the jointly observed frequencies of wave 
heights h and periods t per 1000 of observations as 

: , ( , )A s dp h t . The unconditional information of a data set 
A:s,d,h,t as complete systems (2) is defined by the 
Shannon’s entropy of all observations (12) (Table 3): 

: , : ,( : , , , ) ( , ) log ( , )= −  A s d A s d

all h all t

H A s d h t p h t p h t
 (18) 

The unconditional information entropy of the 
marginal distributions [21] (Ziha, 2007) of all heights 
h=hw 

: , : ,( ) ( , ) 1= =A s d w A s d w

all t

p h p h t  and for periods t=tz 

: , : ,( ) ( , ) 1= =A s d z A s d z

all h

p t p h t  of the data set A:s,d (Fig. 1, 
Table 3) is: 

: , : ,( : , , ) ( ) log ( )= − 
w

A s d w A s d w

all h

H A s d h p h p h  (19) 

: , : ,( : , , ) ( ) log ( )= − 
z

A s d z A s d z

all t

H A s d t p t p t  (20) 

In addition to the unconditional entropy of the 
marginal distribution of heights (19) and periods (20), 
the conditional entropy with respect to a selected 
wave height hw and period tz is defined in (APPENDIX 
C). 
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Figure 1. Distributions of wave heights (a) and periods (b) in 
GWS area A25 
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Table 2. Variability and uncertainty (information) of calm and wavy periods of sea states ___________________________________________________________________________________________________ 
pcalm  (pcalm) pwavy  (pwavy) Condition       CV(9)   H(12)  F(17)  Variability  Uncertainty ___________________________________________________________________________________________________ 
0       1   0   Always wavy       1   0   1   Maximal  Certain 
1/10  3.32  9/10  0.15  Prevailing wavy      0.82  0.47  1.38  High    Low 
1/4  2   3/4  0.41  1/4 time calm 3/4 time wavy  0.5   0.81  1.75  Moderate  Moderate 
1/2  1   1/2  1   1/2 time calm 1/2 time wavy  0   1   2   Invariable  Uncertain 
4/5  0.3  1/5  2.32  3/4 time calm 1/t time wavy  0.6   0.72  1.65  Moderate  Moderate 
19/20  0.07  1/20  4.32  Prevailing calm      0.90  0.29  1.22  High    Low 
1   0   0      Always calm       1   0   1   Maximal  Certain ___________________________________________________________________________________________________ 
 
Table 3. GWS data set A25:s=annual, d=all of wave heights and zero-crossing periods (SUPPLEMENT 1) ___________________________________________________________________________________________________ 
H(t)(20)  2.583  pA:s,d(ht) 0.007  0.053  0.172  0.268  0.247  0.152  0.069  0.023  0.008  0.001   =1 ___________________________________________________________________________________________________ 
    >14              A25:s=annual, d=all   tz 
    13-14              H(A25)=4.85 bits (18) 
    12-13              F(A25)=29 ane (17) 
    11-12              H(A25:h)=2.50 bits(19)              pA:s,d(hw) 
    10-11              H(A25:t)=2.58 bits (20)              =1 
1    9-10              pA:s,d(h,t)    0.001              0.001 
4    8-9                 0.001  0.001  0.001  0.001        0.004 
5    7-8              0.001  0.002  0.002  0.002  0.001        0.008 
6    6-7              0.002  0.004  0.005  0.004  0.002  0.001     0.018 
7    5-6  hw         0.002  0.006  0.012  0.012  0.008  0.003  0.001     0.044 
9    4-5        0.001  0.006  0.019  0.029  0.025  0.014  0.005  0.002  0.001  0.103 
8    3-4        0.002  0.018  0.048  0.059  0.041  0.019  0.006  0.002     0.195 
8    2-3        0.008  0.046  0.089  0.082  0.044  0.016  0.004  0.001     0.290 
8    1-2     0.002  0.022  0.073  0.088  0.053  0.020  0.005  0.001        0.264 
6    0-1     0.005  0.020  0.027  0.015  0.005  0.001              0.073 
Nt=10   h / t  <4   4-5  5-6  6-7  7-8  8-9  9-10  10-11  11-12  12-13  >13  2.497 
Nht=62  Nh=10    2   5   6   8   9   10   8   8   5   1   H(h)(19) ___________________________________________________________________________________________________ 
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Figure 2. Information and variability of all wave directions on annual basis (21) (SUPPLEMENT 2) 

5.2 Uncertainties of wind wave directions of all GWS 
areas 

The entropy of a GWS area A with respect to the 
probabilities pA,d of eight wave directions can be 
assessed as an incomplete system by the 
unconditional [12] Renyi’s entropy (13) where pA=pA,d 
1 (Fig.2), as follows: 

1

, ,

1
( : , ) log= −  R

A d A d

all dA

H A s d p p a
p

 (21) 

Circular statistics [5] (e.g. Fisher, 1993) provides 
the circular mean angle and coefficient of variation. 
Note how the high entropy H (12) and low coefficient 
of variation CV (9) indicate high uniformity of wave 
directions in GWS area A86 (Fig. 2a) compared to A64 
(Fig. 2b). 
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Figures 2a and 2b. Statistics of wind wave directions in A86 
and A64 GWS areas 

5.3 Uncertainties of combinations of GWS data sets 

The combinations of GWS data require the 
information of all GWS areas (18, 19, 20) 
(SUPPLEMENT 3). 

A combination D consists of k GWS data sets Ai:s,d, 
i=1,2,…,k, of areas A, seasons s, and directions d.  
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The relative participations of all data sets 
pA=pA1:s,d+pA2:s,d+…+pAk:s,d1 provide the unconditional 
Renyi’s entropy (13) of the area A, (e.g. Table 4, for 
A25:annaul,all, NW, N, NE, W, E, SW, S, SE), as 
follows: 

1

: , : ,

1

1
( ) log

=

= −   i i

k
R

A s d A s d

iA

H A p p
p

 (22) 

The conditional information entropy of k combined 
data sets of the combination D follows from the 
theorem of mixtures of distributions (16) with respect 
to aggregates A of all partaking areas Ai with 
participations 

: ,A s dp  that is the average information of 
jointly observed heights and periods (18) of all 
components, as shown: 

1

: ,

1

1
( / , ) ( : , , , )

=

=   i

k
R

A s d i

iA

H D h t p H A s d h t
p

 (23) 

The average or conditional entropy of marginal 
distributions of heights ( / )H D h  and of periods 

( / )H D t  of the combination D of the conditional 
entropy of heights ( : , , )H A s d h  (19) and periods 

( : , , )H A s d t  (20) reported in GWS are as shown: 

1

: ,

1

1
( / ) ( : , , )

=

=   i

k
R

A s d

iA

H D h p H A s d h
p

 (24) 

1

: ,

1

1
( / ) ( : , , )

=

=   i

k
R

A s d

iA

H D t p H A s d t
p

 (25) 

The overall or unconditional information of a 
combination D of all jointly observed probabilities of 
heights and periods 

: , ( , )Ai s dp h t  in proportion to the 
relative participations of components

: ,Ai s dp , is equal to 
the sum of the unconditional (22) and the conditional 
information (23), as shown:  

1

: , : , : , : ,

1

1 1

1
( ) ( , ) log ( , )

( / , ) ( )

=

   = −    =   

= +


k

R

Ai s d Ai s d Ai s d A is d

iA

R R

H Dht p p h t p p h t
p

H D h t H A

 (26) 

The overall or unconditional entropy of marginal 
distributions of heights (24) and of periods (25) 
implies the unconditional information 1( )RH A  (22) 
according to the theorem of mixtures of distribution 
(16) as shown: 

1 1 1( ) ( / ) ( )= +R R RH Dh H D h H A  (27) 

1 1 1( ) ( / ) ( )= +R R RH Dt H D t H A  (28) 

Succinctly, the combinations D of selected GWS 
data sets (26-28) comprise the average uncertainties of 
all componential data sets (23-25) augmented by the 
overall area A uncertainty H(A) (22). 

Table 4. Information on combination of all wave directions for A25:s=annual,d= all (SUPPLEMENT 4) ___________________________________________________________________________________________________ 
d     Nht  pA25:d   H(A:h,t)bits  F(A:h,t)  Nh   H(A:h) bits  F(A:h) Nt   H(A:t) bits  F(A:t) 
     GWS  GWS   GWS (18)  2H    GWS   GWS (19)  2H   GWS  GWS (20)  2H ___________________________________________________________________________________________________ 
NW    66   0.1288  4.90    29.9   10    2.55    5.9  10   2.58    6.0 
N     57   0.1770  4.67    25.5   9    2.35    5.1  10   2.53    5.8 
NE    48   0.1887  4.39    20.9   8    2.19    4.6  8   2.38    5.2 
W     66   0.1251  4.89    29.7   11    2.60    6.0  9   2.51    5.7 
E     47   0.0914  4.32    19.9   8    2.16    4.5  8   2.33    5.0 
SW    55   0.1046  4.53    23.0   10    2.36    5.1  8   2.35    5.1 
S     50   0.1043  4.37    20.7   9    2.27    4.8  7   2.28    4.9 
SE     44   0.0638  4.27    19.3   8    2.17    4.5  7   2.26    4.9 
GWS all   433  pA=0.9838 4.86    28.9   73    2.50    5.6  67   2.58    6.0 
Conditional 54       (23) 4.57   23.7   9    (24) 2.34   5.1  8   (25) 2.42   5.36 
Unconditional       (26) 7.52   183       (27) 5.29   39      (28) 5.37   41 ___________________________________________________________________________________________________ 
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Figure 3. Information and variability of all wave periods on annual basis (19) 
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Figure 4. Information and variability of all wave periods on annual basis (20) 

6 TRACING THE OCEAN-WIDE INFORMATION 
BASED ON UNCERTAINTIES 

The article also presents the statistical means (5), 
variances (6) and maximal observed values as well as 
the entropy in bits and the average numbers (17) of 
wave heights (19) (Fig. 3) and periods (20) for all wave 
directions on annual basis (Fig. 4) (SUPPLEMENTS 
from A1-a-a to A104.a.a). 

The study next presents the unconditional 
information (22), the observed maximal values (GWS), 
conditional and unconditional information of wave 
heights/periods (23, 26) as well as of heights (24, 27) 
and periods (25, 28) of the entire GWS and of zones of 
combinations D of selected GWS areas (Table 5). 

The study also presents the unconditional 
information (22), the observed maximal values (GWS), 
conditional and unconditional information of wave 
heights/ (23, 26) as well as of heights (24, 27) and 
periods (25, 28) of the oceanic GWS zones of 
combinations D of selected GWS areas (Table 6). 

The article also presents the charts of average 
numbers (17) based on information entropy of wave 
directions (21), jointly observed heights/periods (18), 
wave heights (19), and wave periods (20) on annual 
basis for wave directions in all 104 GWS areas 
(Appendix A, charts). (SUPPLEMENT 6) 

The annual numbers of wind wave directions (21) 
are given in categories 3 to 8 (Appendix A, Fig. A2). 
The minimal number of wind-wave directions in the 
amount of 2.94 directions is encountered between the 
Brazilian and African coast in the Mid-Atlantic areas 
[A66-A68] where the E and SW wind-wave directions 
prevail with about 90%. The maximal numbers of 

wind-wave directions can even exceed the nominal 
amount of 8 due to reported incompleteness of 
observations (21) in areas where the wave directions 
are almost uniformly distributed, for example in the 
North Atlantic [A1, A4] and in the South Pacific areas 
[A86, A93]. 

The annual numbers of wave heights (19) are 
categorized from 2 to 7 (Appendix A, Fig. A3) in the 
range from 2.9 in the Persian Gulf [A38] to 7.2 in the 
south Indian Ocean [A99, A100] concerning the mean 
value of 4.9 in the whole GWS (Table 5, Fig. 3). The 
high uncertainty categories of 6-7 characterize the 
North Atlantic areas [A3, A8, A9, A15, A16, A24]. 
Lower and moderate wave height uncertainty 
categories are in gulfs and bays, for example, 2.9 in 
the Persian Gulf [A38], 3.1 in the Gulf of Guinea 
[A58], 3.5 in the Red Sea [A37], 3.9 in the Gulf of 
Mexico [A32] and in the Bay of Bengal [A51]. In the 
sea areas prevail the wave height category around 4, 
like 3.8 in the Philippine Sea [A52], 4 in the Arabian 
Sea [A39], 4-4.1 in the Mediterranean Sea [A26-A27], 
4.2 in the Caribbean Sea [A47], 4.3 in the Sea of Japan 
[A18] and in the Yellow Sea [A28]. The wave height 
categories of 3.5-3.7 characterize the seas around the 
islands of Micronesia [A63] and Melanesia [A71]. 

The annual numbers of wave periods (20) are 
alienated in categories 4, 5, and 6 (Appendix A, Fig. 
A4) in the range from 3.6 in the Persian Gulf [A38] to 
maximally 6.2 in the mid-Pacific [A76-A77] 
concerning the 5.75 mean value of whole GWS (Table 
5, Fig. 4). Wave period categories below 4 characterize 
only some gulfs and coastal seas, for example, 3.6 in 
the Persian Gulf [A38] and 4.0 in the Sea of Japan 
[A18].  

 
Table 5. Information on all GWS areas and zones of selected ocean areas (SUPPLEMENT 5) ___________________________________________________________________________________________________ 
All GWS and ocean zones D   %  F(A) Max F(D/h,t) F(Dht) Max  F(D/h) F(Dh)  Max  F(D/t) F(Dt) 
            GWS (22) GWS (23)  (26)  GWS  (24)  (27)  GWS  (25)  (28) ___________________________________________________________________________________________________ 
All GWS areas [A1-A104]   100 91.4 34.2 24.2  2218  7.2   4.9  448  6.5   5.8   526 
Northern areas [A1-A30]   21.7 25.1 34.0 27.0  677  6.9   5.6  141  6.1   5.6   140 
Equatorial areas [A31-A80]   50.6 45.0 27.3 20.8  935  5.2   4.2  188  6.5   5.7   257 
Southern areas [A81-A104]  27.7 22.1 34.2 29.7  656  7.2   6.0  131  6.2   7.0   132 ___________________________________________________________________________________________________ 
 
Table 6. Information on zones of selected ocean areas  ___________________________________________________________________________________________________ 
Ocean zones D (83% of the GWS)  %  F(A) Max F(D/h,t) F(Dht) Max  F(D/h) F(Dh)  Max  F(D/t) F(Dt) 
*some coastal areas not included  GWS (22) GWS (23)  (26)  GWS  (24)  (27)  GWS  (25)  (28) ___________________________________________________________________________________________________ 
North Atlantic Ocean (20 areas*) 15.5 19.0 34.2 24.8  473  6.9   5.0  96   6.5   5.7   109 
South Atlantic Ocean (12 areas*) 12.8 8.8  33.1 25.6  289  6.75  5.0  57   2   6.0   67 
North Pacific Ocean (17 areas*)  21.3 15.9 32.5 23.8  379  6.9   4.7  75   6.2   5.9   94 
South Pacific Ocean (12 areas*)  13.2 10.7 32.8 25.8  276  6.8   5.0  53   6.2   6.0   65 
Indian Ocean (16 areas*)    20.2 14.5 34.2 26.0  378  6.3   5.3  77   6.1   5.8   84 ___________________________________________________________________________________________________ 
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Table 7. Information of some northern hemisphere navigation routes (SUPPLEMENT 7) ___________________________________________________________________________________________________ 
R Route description     GWS A:annual,all  H(A) (22);  F(D/ht)(23); F(D,h)(24);  F(D,t)(25); 
                    F(A)    F(h,t)(26)  F(h)(27)   F(t) (28) ___________________________________________________________________________________________________ 
A English Channel-Gibraltar  A11 A16 A17   1.48; 2.80  27.1; 75.9  5.84; 16.3  5.4; 15.1 
B Gulf of Mexico-Gibraltar   A24 A25 A32 A33 1.86; 3.62  25.6; 92.7  5.22; 14.6  5.6; 20.5 
C Gibraltar - Port Said    A26 A27     0.88; 1.84  17.2; 31.7  4.1; 11.3   4.7; 8.6 
D Suez - Aden       A37       000; 0.00   14.1; 14.1  3.5;  3.5   4.4; 4.4 
E Aden - Arabian Gulf    A39 A50     0.97; 1.96  18.5; 36.4  4.5; 12.6   4.6; 9.0 
F Arabian Gulf-Colombo   A39 A50 A60   1.52; 2.87  18.4; 52.8  4.4; 12.3   4.7; 13.5 
G Colombo - Singapore    A61 A62     0.97; 1.96  17.9; 35.1  3.9;  7.6   5.1; 10.0 
H Singapore - Taiwan     A40 A62     0.97; 1.96  19.9; 39.0  4.6; 12.9   4.9; 9.6 
I Taiwan - Japan      A29 A41     0.97; 1.96  23.6; 46.2  5.2; 14.6   5.2; 10.1 
J North Sea        A11       000; 0.00   23.0; 23.0  5.3;  5.3   5.0; 5.0 
K North Atlantic Ocean    A15 A16     0.97; 1.96  32.6; 63.8  6.6; 13.0   5.8; 11.5 
L North Pacific Ocean    A21 A22 A29 A30 1.72; 3.30  28.8; 95.0  5.7; 16.1   5.9; 19.4 ___________________________________________________________________________________________________ 
Table 8. Uncertainties of some northern hemisphere combined navigation routes (SUPPLEMENT 6) ___________________________________________________________________________________________________ 
Compound route     Routes R (Table 7) H(A) (22);  F(D/ht)(23); F(D,h)(24);  F(D,t)(25); 
                  F(A)    F(h,t)(26)  F(h)(27)   F(t) (28) ___________________________________________________________________________________________________ 
R1-Japan - Arabian Gulf   F-G-H-I     2.00; 4.00  43; 171   12; 32    11; 43 
R2-Germany-Arabian Gulf  J-A-C-D-E    2.09; 4.25  29; 121   8; 23    7; 32 
R3-Germany-Gulf of Mexico  J-A-B      1.05; 2.07  78; 162   13; 28    17; 35 
R4-Gibraltar - Suez – Aden  C-D      0.99; 1.99  23; 45     7; 14    7; 13 
R5-Colombo – Japan    GF-H-I     1.55; 2.94  40; 117   11; 32    10; 30 ___________________________________________________________________________________________________ 
 
6.1 Information based on uncertainties of navigation 

routes 

The effects of environmental uncertainties on 
navigation routes, uncertainties in collision avoidance 
maneuvering (Taylor, 1990), weather uncertainties in 
ship route optimization are of lasting interest 
andimportant for maritime safety [17] (Vettor, 
Bergamini, and Guedes Soares, 2021). 

Routs normally pass through more ocean areas 
that may be jointly viewed as zones Z or a 
combination of zones D (21-28) in proportion to the 
length of a route or time spent in specific areas. The 
article recalculates the annual uncertainties of all 
wave directions, heights, and periods at some 
northern hemisphere shipping routes (Table 7). 

Overall uncertainties of northern hemisphere 
combined navigation routes R are presented in Table 
8.  

Note that the entropy approach (21-28) is 
applicable to uncertainty assessment of navigation 
routes for different seasons, wave directions, heights, 
and periods.  

For those with gambling experience, the 
navigation at the Mediterranean (Gibraltar - Suez – 
Aden) (R4) is uncertain concerning jointly observed 
heights and periods in all directions on an annual 
basis (26) as flipping log2171=7.41 coins or dicing with 
a log6171=2.88 six-sided die or drawing a card from a 
stock of 171 cards.  

The navigation through the North Sea and the 
Atlantic Ocean from Germany to the Gulf of Mexico 
(R3) is uncertain as flipping log2162=7.35 coins or 
dicing with log6162=2.84 six sided dice or drawing 
from a stock of 162 cards (Table 8).  

7 CONCLUSION 

The article demonstrated that the probabilistic 
uncertainties expressed in terms of the information 

theory perceptively present the random properties of 
ocean wind wave climate data compiled in the Global 
Wave Statistics. The information entropy objectively 
defines the unexpectedness and uncertainty of ocean 
wind waves regarding the environmental and 
maritime experiences of randomness. Numerical 
calculations provide summarizing uncertainty 
formulae, tables, graphs, and charts of wind wave 
directions, heights, and periods in all relevant oceanic 
areas, zones, and routes. The ocean-wide distributions 
of wind-wave information based on environmental 
uncertainties are useful for maritime safety 
management, navigation, shipping, and various 
maritime activities as well as on exposures of ocean 
structures and vessels in service.  

NOMENCLATURE 

A  GWS areas (max 104) 
CV coefficient of variation 
D  combined GWS data sets 
d  GWS directiones (max 8+1) 
E  directional exposure 
H  information entropy (bits) 
h  GWS wave heights (max 15) 
F  average numbers of events, directional wave effects 
,  unexpectedness, equivalent number of outcomes 
NA, Ns, Nd Number of areas, seasons and directions 
Nh, Nt, Number of wave heights and periods 
p, P probability , probability distributions 
R  ocean navigation routes, robustness 
S  systems of events, directional exposability 
s  GWS seasons (max 4+1) 
t  GWS periods (max 11) 
V  variance 
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Figure A1. Marsden’s squares in GWS Hogben, Dacunha 
and Olliver (1986) 
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Figure A2. Average numbers of wave directions observed in 
GWS on annual basis 

 

6.9 5.8 

3.6 

5.6 

5.0 4.6 

6.3 

3.7 

4.1 4.0 

3
5 

5,7 6.9 

  5.4 

5,7 

4,6 

6.7 

4.4 

5.6 

5.0 

6.2 

6.1 

6.4 

6.6 

6.7 

4.1 3.9 3.8 4.0
000
00 

4.2 

3.3 

4.5 

3.6 

3.5 

6.1 5.6 4.9 

 

 5.3 
5.8 6.1 4.5 

6.8 

5.3 6.9 6.7 

3.1 3.4 

5.1 

4.6 

3.7 3.7 

4.1 

3.4 

5.9 6.0 

6.3 7.1 

6.3 6.1 5.5 

6.2 7.2 

5.1 5.0 
5.1 

5.6 6.3 

4.4 

3.7 

3.5 4,1 4,0 

5.0 

6.7 

6.6 

6.4 

5.0 

3.8 4.0 4.3 

5.2 5.0 

4.5 

 

3.8 

 
4.9 3.9 

 

 
 

 5.3 

 

5.2 

4.7 
4.5 

4.6 4.2 4.5 4.2 

6.2 

5.6 

6.4 

3.9 

 
4.1 

2.5-3.5 3.5-4.5 4.5-5.5 5.5-6.5 6.5-7.5 Max 7.2 Min 2.9 

6,1 

2.9 
3.5 

 

5.6 

 5.5 

4.0 

4.0 

4.3 

4.3 

3.7 
5.9 

4.3 

 

Figure A3. Average numbers of wave heights in GWS on 
annual basis for all wave directions 
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Figure A4. Average numbers of wave periods in GWS on 
annual basis for all wave directions 

APPENDIX B 

Proof of the relation between the conditional and 
unconditional entropies (16): 
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APPENDIX C 

Instead of the unconditional entropy of the marginal 
distribution of heights (19) and periods (20) the 
conditional entropy with respect to a selected wave 
height hw and period tz is: 

: , : ,

: , : ,

( , ) ( , )
( : , / ) log

( ) ( )
= −

A s d w A s d w

w

all t A s d w A s d w

p h t p h t
H A s d h

p h p h

 (C1) 

: , : ,

: , : ,

( , ) ( , )
( : , / ) log

( ) ( )
= −

A s d z A s d z

z

all t A s d z A s d z

p h t p h t
H A s d t

p t p t

 (C2) 

Subsequently, the conditional entropy with respect to 
all wave heights h and for periods t is: 

,( : , / ) ( ) ( : , / )=  A d w w

all h

H A s d h p h H A s d h  (C3) 

,( : , / ) ( ) ( : , / )=  A d w z

all h

H A s d t p h H A s d t  (C4) 

The relation among the unconditional entropy of 
joint distribution (18), unconditional entropy of of 
marginal distributions (19, 20) and the conditional 
entropy of heights(C3) and periods C4) holds: 

( : , , , ) ( : , , ) ( : , / )

( : , , ) ( : , / )

= + =

= +

H A s d h t H A s d h H A s d h

H A s d t H A s d t
 (C5) 

The difference between the entropy of marginal 
distributions of heights (19) and periods (20) and the 
conditional entropy (C3) and (C4) are normally small. 
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