Journal is indexed in following databases:
- SCOPUS
- Web of Science Core Collection - Journal Citation Reports
- EBSCOhost
- Directory of Open Access Journals
- TRID Database - Transportation Research Board
- Index Copernicus Journals Master List
- BazTech
- Google Scholar
2023 Journal Impact Factor - 0.7
2023 CiteScore - 1.4
ISSN 2083-6473
ISSN 2083-6481 (electronic version)
Editor-in-Chief
Associate Editor
Prof. Tomasz Neumann
Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
e-mail transnav@umg.edu.pl
Prototyping and Simulation Environment of Ship Motion Control System
Times cited (SCOPUS): 10
ABSTRACT: Authors of this paper describe the test-bench used for ship motion control system prototyping. This tool is built with the PC-type hardware and the Matlab-Simulink software. The scale model of the VLCC tanker was chosen as a control object. This model is used on a lake as a shiphandling training vessel. The complex, nonlinear mathematical model of this training vessel was used in the test-bench simulations. Authors describe two types of them: the non-real-time (software) and the real-time (harware-in-the-lop) one. As an example of usability, results of the MIMO LMI controller tests of the ship velocities in 3DOF were shown.
KEYWORDS: Control System, Multiple Input, Multiple Output (MIMO), Simulation, Degrees-of-Freedom (DOF), Very Large Crude Carrier (VLCC), Matlab-Simulink, High Precision Network (HPN), HIL Controller
REFERENCES
Abkowitz, M.A. 1964. Lectures on ship hydrodynamics: steering and manoeuvrability. Lyngby: Hydrodynamics Department.
Boyd, S. El Ghaoui, L. Feron, E. & Balakrishnan, V. 1994. Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM. - doi:10.1137/1.9781611970777
Duan, G.R. & Yu, H.H. 2013. LMIs in Control Systems: Analysis, Design and Applications. Boca Raton: CRC Press. - doi:10.1201/b15060
Erol, B. & Delibasi, A. 2018. Fixed – order H∞ Controller Design for MIMO Systems Via Polynomial Approach. Transactions of the Institute of Measurement and Control. (OnlineFirst). doi.org/10.1177/0142331218792411 - doi:10.1177/0142331218792411
Fossen, T.I. 2002. Marine Control Systems: Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles. Trondheim: Marine Cybernetics.
Gierusz, W. & Tomera, M. 2006. Logic Thrust Allocation Applied to Multivariable Control of the Training Ship. Control Engineering Practice, 14(5): 511-524. - doi:10.1016/j.conengprac.2005.03.005
Miller, A. 2016. Identification of a multivariable incremental model of the vessel. In: Proc of 21st International Conference on Methods and Models in Automation and Robotics (MMAR). Międzyzdroje. doi: 10.1109/MMAR.2016.75751 36 - doi:10.1109/MMAR.2016.7575136
Miller, A. & Rybczak, M. 2015. Methods of controller synthesis using linear matrix inequalities and model predictive control. Scientific Journals of the Maritime University of Szczecin. 43(115): 22–28.
Perez, T. & Blanke M. 2003. DCMV a matlab/simulink toolbox for dynamics and control of marine vehicles. In: Proc. of 6th IFAC Conference on Manoeuvring and Control of Marine Craft MCMC’03. Girona. - doi:10.1016/S1474-6670(17)37781-9
Perez, T. Fossen, T.I. 2011. Practical aspects of frequency-domain identification of dynamic models of marine structures from hydrodynamic data. Ocean Engineering, 38(2-3): 426-435. - doi:10.1016/j.oceaneng.2010.11.004
Perez, T. Smogeli, Ø.N. Fossen, T.I. & Sørensen, A.J. 2006. An Overview of the Marine Systems Simulator (MSS): A Simulink Toolbox for Marine Control Systems. Modeling, Identification and Control, 27(4): 259-275 - doi:10.4173/mic.2006.4.4
Rybczak, M. 2018. Improvement of control precision for ship movement using a multidimensional controller. Automatika, 59 (1): 63-70 - doi:10.1080/00051144.2018.1499427
Tapia, A. Bernal, M. & Fridman, L. 2017. An LMI approach for second-order sliding set design using piecewise Lyapunov functions. Automatica. 79: 61-64. - doi:10.1016/j.automatica.2017.02.014
Tomera, M. 2015, A Multivariable Low Speed Controller for a Ship Autopilot with Experimental Results. In Proc. of 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje. doi: 10.1109/MMAR.2015.7283699. - doi:10.1109/MMAR.2015.7283699
Citation note:
Rybczak M., Rak A.: Prototyping and Simulation Environment of Ship Motion Control System. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 14, No. 2, doi:10.12716/1001.14.02.13, pp. 367-374, 2020