Journal is indexed in following databases:
- SCOPUS
- Web of Science Core Collection - Journal Citation Reports
- EBSCOhost
- Directory of Open Access Journals
- TRID Database - Transportation Research Board
- Index Copernicus Journals Master List
- BazTech
- Google Scholar
2023 Journal Impact Factor - 0.7
2023 CiteScore - 1.4
ISSN 2083-6473
ISSN 2083-6481 (electronic version)
Editor-in-Chief
Associate Editor
Prof. Tomasz Neumann
Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
e-mail transnav@umg.edu.pl
Prediction Control Systems in Marine Applications
Times cited (SCOPUS): 1
ABSTRACT: The paper presents one of the modern control methods used for steering of the ship motion. The different automatic systems used to navigate the vessels are described at the beginning. Next, prediction control methodology is presented and multidimensional MPC regulator applied to steering of the training ship is shown as a technical product. Tests results from the real-time experiments with the mentioned controller are presented at the end of the article.
KEYWORDS: Control System, Multiple Input, Multiple Output (MIMO), Ship Motion, Model Predictive Control (MPC), Marine Applications, Automatic System, Model Predictive Heuristic Control (MPHC), Generalized Predictive Control (GPC)
REFERENCES
Bowman, M. L. 2009. Navy tactics, techniques and procedures underway replenishment. NTTP 4-01.4 Tech, Rep. Departament of the Navy Office of the Chief of Naval Operations
Camacho, E. F., & Alba, C. B. 2013. Model predictive control. Springer Science & Business Media.
Clarke, D. W., Mohtadi, C., & Tuffs, P. S. 1987. Generalized predictive control—Part I. The basic algorithm. Automatica 23(2): 137-148. - doi:10.1016/0005-1098(87)90087-2
Fossen, T. I. 2002. Marine Control Systems. Marine Cybernetics. Trondheim Norway.
Fossen, T. I. 2011. Marine Craft Hydrodynamics and Motion Control. J. Wiley & Sons Ltd. - doi:10.1002/9781119994138
Gierusz, W., Vinh, N. C. & Rak, A., 2007, Maneuvering control and trajectory tracking of very large crude carrier. Ocean Engineering 34: 932-945. - doi:10.1016/j.oceaneng.2006.06.003
Gierusz, W. 2015. Simulation model of the LNG carrier with podded propulsion Part 1: Forces generated by pods. Ocean Engineering 108: 105-114. - doi:10.1016/j.oceaneng.2015.07.031
Gierusz, W. 2016. Simulation model of the LNG carrier with podded propulsion Part 2: Full model and experimental results. Ocean Engineering 123: pp. 28-44. - doi:10.1016/j.oceaneng.2016.06.024
Hals, T. Tandem Loading and Drilling Operations Under Changing Environmental Conditions. Dynamic Positioning Conference, Houston, USA, 09, 2004.
Holkar, K. & Waghmare, L. 2010. An overview of model predictive control. International Journal of Control and Automation 3(4): 47-63.
Horiuchi, S., Tamatsukuri, T., & Nohtomi, S. 2000. An automotive lateral controller based on generalized predictive control theory. JSAE review 21(1): 53-59. - doi:10.1016/S0389-4304(99)00076-4
Kalman, R. E. et al. 1960. Contributions to the theory of optimal control. Boletin de la Sociedad Matem´atica Mexicana 5(2): 102-119.
Kozlik, C. et al. 2016. Dynamic matrix control applied to emission control of a diesel engine. International Journal of Engine Research 17(5): 556-75 - doi:10.1177/1468087415592991
Lisowski, J. 2012. Game control methods in avoidance of ship collisions, Polish Maritime Research Special Issue 19(1): 3-11 - doi:10.2478/v10012-012-0016-4
Miller, A. 2016a. Identification of a multivariable incremental model of the vessel. 21st International Conference on Methods and Models in Automation and Robotics, IEEE: 218-224. - doi:10.1109/MMAR.2016.7575136
Miller, A. 2016b. Interaction Forces Between Two Ships During Underway Replenishment. The Journal of Navigation 69(6): 1197-1214. - doi:10.1017/S0373463316000308
Perez, T. 2005. Ship Motion Control: Course Keeping and Roll Stabilisation Using Rudder and Fins. Springer Verlag: London
Rybczak, M. 2018. Improvement of control precision for ship movement using a multidimensional controller. Automatika 59(1): 63-70. - doi:10.1080/00051144.2018.1499427
Shouji, T., Ishiguro, T. & Mizoguchi. S. Hydrodynamic forces by propeller and rudder interaction at low speed. Int. IFAC Conference MARSIM and ICSM, Tokyo, Japan, June 1990.
Testud, J. et al. 1978. Model predictive heuristic control. Applications to industrial processes. Automatica 14(5): 413-428. - doi:10.1016/0005-1098(78)90001-8
Tomera, M. 2016, Hybrid real-time way-point controller for ships. In 21th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 630-635. - doi:10.1109/MMAR.2016.7575209
Tomera, M. 2018. Multi-operational control of the ship motion in a system with switchable structure. Gdynia
Wang, P. K. 1991. Navigation strategies for multiple autonomous mobile robots moving in formation. Journal of Robotic Systems 8(2): 177-195. - doi:10.1002/rob.4620080204
Zavala, V. M. & Biegler, L. T. 2009. Optimization-based strategies for the operation of low-density polyethylene tubular reactors: nonlinear model predictive control. Computers & Chemical Engineering 33(10): 1735-1746. - doi:10.1016/j.compchemeng.2009.04.008
Zhoghui, H. & Xiuyan, P. 2011. Integral nested sliding mode control for ship turning. 3rd IEEE International Conference on Communication Software and Networks (ICCSN), Xi’an, China - doi:10.1109/ICCSN.2011.6014383
iSSMC - Ship Stabilization and Motion Control System. 2014 IMAR Navigation & Control GmbH. Information Brochure
Ride Control Systems, Advanced Ship Motion Reduction in Five Degrees of Freedom. Naiad Dynamics 2015, Infmation Brochure
Citation note:
Gierusz W., Miller A.: Prediction Control Systems in Marine Applications. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 14, No. 2, doi:10.12716/1001.14.02.12, pp. 361-366, 2020
Authors in other databases:
Witold Gierusz:
SbabZPMAAAAJ
Anna Miller: