Journal is indexed in following databases:
- SCOPUS
- Web of Science Core Collection - Journal Citation Reports
- EBSCOhost
- Directory of Open Access Journals
- TRID Database - Transportation Research Board
- Index Copernicus Journals Master List
- BazTech
- Google Scholar
2024 Journal Impact Factor - 0.6
2024 CiteScore - 1.9
ISSN 2083-6473
				ISSN 2083-6481 (electronic version)
				Editor-in-Chief
				
				Associate Editor
				Prof. Tomasz Neumann
				Published by
				TransNav, Faculty of Navigation
				Gdynia Maritime University 
				3, John Paul II Avenue
				81-345 Gdynia, POLAND
				
				e-mail transnav@umg.edu.pl
			Integrated Maintenance Decision Making Platform for Offshore Wind Farm with Optimal Vessel Fleet Size Support System
							
							
								1 AGH University of Science and Technology, Kraków, Poland
							
							
							ABSTRACT: The paper presents a model to coordinate the predictive-preventive maintenance process of Offshore Wind Farm (OWF) with optimal Vessel Fleet (VF) size support system. The model is presented as a bi-level problem. On the first level, the model coordinates the predictive-preventive maintenance of the OWF and the distributed Power System minimizing the risk of Expected Energy not Supply (EENS). The risk is estimated with a sequential Markov Chain Monte Carlo (MCMC) simulation model. On the second level the model determining the optimal fleet size of vessels to support maintenance activities at OWF.
							KEYWORDS: Offshore Wind Farms, Decision Making Platform, Markov Chain Monte Carlo (MCMC), Expected Energy not Supply (EENS), Operation and Maintenance (O&M), Optimal Vessel Fleet Size Support System, Predictive-Preventide Maintenance Scheduling (PPMS), Load Duration Curve (LDC) 
							REFERENCES
							Alcoba, A.G., Ortega, G., Hendrix, E.M.T., Weare, H., and Haugland, D. (2017). A model for optimal fleet composition of vessels for offshore wind farm maintenance. Procedia Computer Science, 108C, 1512-1521. - doi:10.1016/j.procs.2017.05.230
								Aminia, M.H., Kargariane, A., and Karabasoglua, O. (2016). Arima-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation. Electric Power Systems Research, 140, 378-390. - doi:10.1016/j.epsr.2016.06.003
								Atwa, Y., El-Saadany, E., Salama, M., Seethapathy, R., Assam, M., and Conti, S. (2011). Adequacy evaluation of distribution system including wind/solar dg during different modes of operation. IEEE Transactions on Power Systems, 26(4), 1945-1952. - doi:10.1109/TPWRS.2011.2112783
								Billinton, R. and Allan, R. (1996). Reliability evaluation of power systems. 2nd Edition, Plenum Press. New York. ISBN: 0-306-45259-6. - doi:10.1007/978-1-4899-1860-4
								Billinton, R. and Huang, D. (2006). Peaking unit considerations in generating capacity adequacy assessment. Canadian Conference on Electrical and Computer Engineering, 2006. CCECE '06, Ottawa, May 2006. 386-389. ISBN: 1-4244-0038-4. - doi:10.1109/CCECE.2006.277661
								Florian, M. and Sorensen, J.D. (2017). Risk-based planning of operation and maintenance for offshore wind farms, 14th deep sea offshore wind R&D conference, EERA Deep-Wind 2017, 18-20 January 2017, Trondheim, Norway. Energy Procedia, 137, 261-272. - doi:10.1016/j.egypro.2017.10.349
								Halvorsen-Weare, E.E., Norstada, I., Stalhane, M., and Nonas, L.M. (2017). A metaheuristic solution method for optimizing vessel fleet size and mix for maintenance operations at offshore wind farms under uncertainty, 14th deep sea offshore wind R&D conference, EERA Deep-Wind 2017, 18-20 January 2017, Trondheim, Norway. Energy Procedia, 137, 531-538. - doi:10.1016/j.egypro.2017.10.382
								Karki, R., Thapa, S., and Billinton, R. (2012). A simplified risk-based method for short-term wind power commitment. IEEE Transactions on Sustainable Energy, 3(3), 498-505. - doi:10.1109/TSTE.2012.2190999
								Stalhane, M., amd Elin E. Halvorsen-Weareb, H.V., Hvattum, L.M., and Nonas, L.M. (2016). Vessel fleet optimization for maintenance operations at offshore wind farms under uncertainty, 13th deep sea offshore wind R&D conference, EERA Deep-Wind 2016. Energy Procedia, 94, 357-366. - doi:10.1016/j.egypro.2016.09.195
								Yan, Y., Ding, Y., Guo, C., Wang, R., Cheng, L., and Sun, Y. (2016). Operating reliability analysis of peaking generating units considering start-up failures and degradation. 2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management. 168-171. ISBN: 978-1-4673-9941-8/16. - doi:10.1109/SMRLO.2016.37
								Zhong, S., Pantelous, A.A., Beer, M., and Zhou, J. (2018). Constrained non-linear multi-objective optimization of preventive maintenance scheduling for offshore wind farms. Mechanical Systems and Signal Processing, 104, 347-369. - doi:10.1016/j.ymssp.2017.10.035
								Zhong, S., Pantelous, A.A., Goh, M., and Zhou, J. (2019). A reliability-and-cost-based fuzzy approach to optimize preventive maintenance scheduling for offshore wind farms. Mechanical Systems and Signal Processing, 124, 643-663. - doi:10.1016/j.ymssp.2019.02.012
							Citation note:
							Szpytko J., Salgado Duarte Y.: Integrated Maintenance Decision Making Platform for Offshore Wind Farm with Optimal Vessel Fleet Size Support System. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 13, No. 4, doi:10.12716/1001.13.04.15, pp. 823-830, 2019
			
							
							
							Authors in other databases:
								Janusz Szpytko:
								
								 orcid.org/0000-0001-7064-0183
orcid.org/0000-0001-7064-0183
								 6507258714
6507258714
								
								
							
							
							 orcid.org/0000-0001-7064-0183
orcid.org/0000-0001-7064-0183
								 6507258714
6507258714
								 MJh_PA0AAAAJ
MJh_PA0AAAAJ
