Journal is indexed in following databases:
- SCOPUS
- Web of Science Core Collection - Journal Citation Reports
- EBSCOhost
- Directory of Open Access Journals
- TRID Database - Transportation Research Board
- Index Copernicus Journals Master List
- BazTech
- Google Scholar
2023 Journal Impact Factor - 0.7
2023 CiteScore - 1.4
ISSN 2083-6473
ISSN 2083-6481 (electronic version)
Editor-in-Chief
Associate Editor
Prof. Tomasz Neumann
Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
e-mail transnav@umg.edu.pl
Inherent Properties of Ship Manoeuvring Linear Models in View of the Full-mission Model Adjustment
1 Maritime University of Szczecin, Szczecin, Poland
ABSTRACT: The paper presents new results on the inherent properties of ship linear dynamics. The focus is made on the second-order formulation for the uncoupled equations of sway and yaw, and on their unique, unknown performance within the zigzag test. From the standpoint of application to full-mission model tuning, a very important loop in the drift-yaw domain of the zigzag behaviour, as governed by the rudder rate dependent time constants (of T3-type), is brought to the light. This and some other dependent effects, like overshoot angle performance, are likely to be lost, if the well-known, rather ambiguous, first-order approximations are deployed.
KEYWORDS: Ship Handling, Hydrodynamics, Manoeuvring, Full Mission Model Adjustment, Ship Linear Dynamics, Drift Equation, Yaw Equation, Hydrodynamic Parameters
REFERENCES
Artyszuk J.: Modelling and Simulation in Ship Manoeuvring Safety and Effectiveness Issues. ISBN 978-83-89901-78-1, Maritime University, Szczecin, 2013 (in Polish).
Dudziak J.: Ship Theory. 2nd Ed., Foundation of Shipbuilding Industry and Maritime Economy Promotion, Gdansk, 2008 (in Polish).
Holzhuter T.: A workable dynamic model for the track control of ships. Ninth Ship Control Systems Symposium. Proceedings, Sep 24-27, vol. 4, Bethesda, 1990.
Kallstrom C.G.: Identification and Adaptive Control Applied to Ship Steering. Ph.D. Thesis, Institute of Technology, Lund, 1979.
Lebedeva M.P. et al.: Development of Criteria for Certification of the Mathematical Models Used by Marine Simulators, International Confe¬rence on Marine Simulation and Ship Manoeuvrability – MARSIM 2006, Jun 25–30, Terschelling, 2006.
Lisowski J.: Ship as Automatic Control Object. Wyd. Morskie, Gdansk, 1981 (in Polish)
Nomoto K.: Analysis of Kempf's standard maneuver test and proposed steering quality indices. First Symposium on Ship Maneuverability, May 24-25, DTMB Rep. 1461 (AD 442036), DTMB, Washington, 1960.
Nomoto K. et al.: On the Steering Qualities of Ships. International Shipbuilding Progress (ISP), vol. 4, no. 35 (Jul), 1957.
Norrbin N.H.: Further Notes on the Dynamic Stability Parameter and the Prediction of Manoeuvring Characteristics. MARSIM '96 Proc., Marine Simulation and Ship Manoeuvrability (A.A. Balkema, Rotterdam), Chislett M.S.(ed.), Sep 9-13, DMI, Copenhagen, 1996.
Sutulo S., Guedes Soares C.: An algorithm for offline identification of ship manoeuvring mathematical models from free-running tests. Ocean Engineering, v. 79, pp. 10-25, 2014.
Terada D.: Novel identification method of maneuverability indices concerning drift motion based on successive data assimilation. Journal of Maritime Researches, Kobe University, vol. 5 (Mar), pp. 1-13, 2015.
Citation note:
Artyszuk J.: Inherent Properties of Ship Manoeuvring Linear Models in View of the Full-mission Model Adjustment. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 10, No. 4, doi:10.12716/1001.10.04.08, pp. 595-604, 2016