Journal is indexed in following databases:
- SCOPUS
- Web of Science Core Collection - Journal Citation Reports
- EBSCOhost
- Directory of Open Access Journals
- TRID Database - Transportation Research Board
- Index Copernicus Journals Master List
- BazTech
- Google Scholar
2023 Journal Impact Factor - 0.7
2023 CiteScore - 1.4
ISSN 2083-6473
ISSN 2083-6481 (electronic version)
Editor-in-Chief
Associate Editor
Prof. Tomasz Neumann
Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
e-mail transnav@umg.edu.pl
The Process of Radar Tracking by Means of GRNN Artificial Neural Network with Dynamically Adapted Teaching Sequence Length in Algorithmic Depiction
1 Maritime University of Szczecin, Szczecin, Poland
ABSTRACT: The radar with the function of automatic target tracking is the navigator?s basic aid in estimating a collision situation with regard to his own vessel. The quality of radar tracking process affects the reliability of data provided to the navigator for situation assessment, including the vessel?s safety. The use of artificial intelligence methods (GRNN network in particular) for this purpose permits a decrease of tracking errors and the shortening of delay of the vector presented in relation to real time. The article presents an algorithmic depiction of radar tracking by means of GRNN-based neural filter. There have been presented a filter diagram, an algorithm of GRNN parameter selection, manoeuvre detection, as well as the process of radar tracking by means of this filter.
KEYWORDS: Aids to Navigation (AtoN), Radar Tracking, GRNN Artificial Neural Network, Algorithmic Depiction, Dynamically Adapted Teaching Sequence Length, Manoeuvre Detection, Filter Diagram, Artificial Intelligence (AI)
REFERENCES
Bar Shalom Y. & Li X.R 1998, Estimation and tracking: principles, techniques, and software, YBS, Norwood.
Duch W. & Korbicz J. & Rutkowski L. & Tadeusiewicz R. 2000, Sieci neuronowe (Neural Networks), Akademicka Oficyna Wydawnicza Exit, Warszawa.
Juszkiewicz W. & Stateczny A. 2000, GRNN Cascade Neural Filter For Tracked Target Manoeuvre Estimation, Proceedings of the Fifth Conference ‘Neural Networks and Soft Computing’, Zakopane.
Lula P. & Tadeusiewicz R. 2001, Wprowadzenie do sieci neuronowych (Introduction to Neural Networks), Kraków.
Specht, D.F. 1991, A Generalized Regression Neural Network, IEEE Transactions on Neural Networks.
Stateczny A. 2000, Neural State Estimation in Sea Navigation, Geodezja i Kartografia nr 4.
Stateczny A. 2001a, Nawigacja porównawcza (Comparative Navigation). Gdańskie Towarzystwo Naukowe, Gdańsk.
Stateczny A. 2001b, Neural manoeuvre detection of the tracked target in ARPA systems, Proceedings CAMS 2001 Glasgow.
Stateczny A. (red) 2004, Metody nawigacji porównawczej (Methods of Comparative Navigation), Gdańskie Towarzystwo Naukowe, Gdańsk.
Stateczny A. & Kazimierski W. 2006a, Automatic Target Tracking in Radar Systems Using GRNN, Konferencja Morska Gdynia 2005- Polish Journal of Environmental Studies, Vol., supp. 1
Stateczny A. & Kazimierski W. 2006b, Aspects of Tuning GRNN Networks for the Needs of Estimating Target Movement Vectors in Marine Radars, Polish Journal of Environmental Studies, Vol.15, No.4B.
Stateczny A. & Kazimierski W. 2006c, Detection of Manoeuvre for the Needs of Estimating the Target’s State Vector in the Process of Radar Tracking, International Radar Symposium, Kraków.
Stateczny A. & Kazimierski W. 2006c, The Length of GRNN Network Teaching Sequence in the Process of Estimating a Target’s State Vector in an ARPA Device, Proceedings of the ICAISC, Zakopane.
Stateczny A. & Praczyk T., 2002, Sztuczne sieci neuronowe w rozpoznawaniu obiektów morskich (Artificial Neural Networks in recognizing Marine Targets), Gdańskie Towarzystwo Naukowe, Gdańsk.
Stateczny A. & Uruski P., 2003, Comparison of neural-network and Kalman-filter approaches to a maritime target tracking, Proceedings of the International Radar Symposium, Dresden.
Citation note:
Stateczny A., Kazimierski W.: The Process of Radar Tracking by Means of GRNN Artificial Neural Network with Dynamically Adapted Teaching Sequence Length in Algorithmic Depiction. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 2, No. 1, pp. 45-50, 2008
Authors in other databases:
Witold Kazimierski:
24829115600
X7m2hjsAAAAJ