Journal is indexed in following databases:
- SCOPUS
- Web of Science Core Collection - Journal Citation Reports
- EBSCOhost
- Directory of Open Access Journals
- TRID Database - Transportation Research Board
- Index Copernicus Journals Master List
- BazTech
- Google Scholar
2023 Journal Impact Factor - 0.7
2023 CiteScore - 1.4
ISSN 2083-6473
ISSN 2083-6481 (electronic version)
Editor-in-Chief
Associate Editor
Prof. Tomasz Neumann
Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
e-mail transnav@umg.edu.pl
Reducing Methane Emissions on Livestock Ships in Order to Mitigate Greenhouse Gas Emissions and Promote Future Maritime Sustainability
1 Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
2 Alexandria University, Alexandria, Egypt
2 Alexandria University, Alexandria, Egypt
ABSTRACT: One of the main causes of climate change and global warming is greenhouse gas emissions. Livestock makes up 15% of the world's greenhouse gases (GHG), whereas maritime shipping accounts for 3%. Cattle can produce about 500 grams of methane a day per cow. This study demonstrates that livestock ships are an extremely high source of methane emissions. This study also offers innovative scientific techniques for lowering methane gas emissions from livestock ships. The MV Gelbray Express Livestock ship is selected to investigate the overall emissions generated by the main engine and the livestock on board. Main engine CO2 emissions and livestock CO2 equivalent emissions are theoretically calculated during 24-hour sailing under engine full load and livestock full capacity. The study revealed that livestock CO2 equivalent emissions account for 43% of the total CO2 emissions emitted by the engine and the livestock. To decrease livestock methane emissions, ZELP (Zero Emissions Livestock Project) has patented a unique catalytic technique for capturing and neutralizing methane generated during enteric fermentation in ruminant animals such as cows. Theoretical results show that using the ZELP mask reduces CO2 equivalent emissions by 58 000 kg per day at a livestock capacity of 4000 cattle onboard the MV Gelbray Express Livestock ship.
KEYWORDS: Maritime Transport, Emission Control Area (ECA), Emission Reduction, Energy Efficiency Design Index (EEDI), Greenhouse Gas (GHG), Energy Efficiency, Carbon Dioxide (CO2), Livestock Ships
REFERENCES
A.G. Elkafas, M.M. Elgohary, M.R. Shouman, Numerical analysis of economic and environmental benefits of marine fuel conversion from diesel oil to natural gas for container ships, Environ. Sci. Pollut. Res. 28 (2021) 15210–15222. - doi:10.1007/s11356-020-11639-6
Al-Enazi, A., Okonkwo, E. C., Biçer, Y., & Al‐Ansari, T. (2021). A review of cleaner alternative fuels for maritime transportation. Energy Reports, 7, 1962–1985. - doi:10.1016/j.egyr.2021.03.036
Alqarni, D. S., Lee, C. W., Knowles, G. P., Vogt, C., Marshall, M., Gengenbach, T. R., & Chaffee, A. L. (2021). Ru-zirconia catalyst derived from MIL140C for carbon dioxide conversion to methane. Catalysis Today, 371, 120–133. - doi:10.1016/j.cattod.2020.07.080
Ammar, N. R., & Seddiek, I. S. (2020). Enhancing energy efficiency for new generations of containerized shipping. Ocean Engineering, 215, 107887. - doi:10.1016/j.oceaneng.2020.107887
Brouček, J. (2014). Production of Methane Emissions from Ruminant Husbandry: A Review. Journal of Environmental Protection, 05(15), 1482–1493. - doi:10.4236/jep.2014.515141
Chow, W. L., Chong, S., Lim, J. W., Chan, Y. J., Chong, M. F., Tiong, T. J., Chin, J. K., & Pan, G. T. (2020). Anaerobic Co-Digestion of Wastewater sludge: A review of potential Co-Substrates and operating factors for improved methane yield. Processes, 8(1), 39. - doi:10.3390/pr8010039
Elmallah, M., Elgohary, M. M., & Shouman, M. R. (2023). The effect of air chamber geometrical design for enhancing the output power of oscillating water column wave energy converter. Marine Technology Society Journal, 57(1), 122–129. - doi:10.4031/MTSJ.57.1.14
Fazlollahi, S., & Maréchal, F. (2013). Multi-objective, multi-period optimization of biomass conversion technologies using evolutionary algorithms and mixed integer linear programming (MILP). Applied Thermal Engineering, 50(2), 1504–1513. - doi:10.1016/j.applthermaleng.2011.11.035
Fazlollahi, S., Mandel, P., Becker, G., & Maréchal, F. (2012). Methods for multi-objective investment and operating optimization of complex energy systems. Energy, 45(1), 12–22. - doi:10.1016/j.energy.2012.02.046
Grove, H., & Clouse, M. (2021). Zero net emissions goals: Challenges for boards. Corporate Board: Role, Duties & Composition, 17(2), 54–69. - doi:10.22495/cbv17i2art5
Huan, T., Fan, H., Lei, W., & Guo-Qiang, Z. (2019). Options and evaluations on propulsion systems of LNG carriers. In IntechOpen eBooks. - doi:10.5772/intechopen.82154
Hussin, F., & Aroua, M. K. (2020). Recent trends in the development of adsorption technologies for carbon dioxide capture: A brief literature and patent reviews (2014–2018). Journal of Cleaner Production, 253, 119707. - doi:10.1016/j.jclepro.2019.119707
Hwangbo, S., Lee, I., & Han, J. (2017). Mathematical model to optimize design of integrated utility supply network and future global hydrogen supply network under demand uncertainty. Applied Energy, 195, 257–267. - doi:10.1016/j.apenergy.2017.03.041
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2021.
Jeffry, L., Ong, M. Y., Nomanbhay, S., Mofijur, M., Mubashir, M., & Show, P. L. (2021). Greenhouse gases utilization: A review. Fuel, 301, 121017. - doi:10.1016/j.fuel.2021.121017
Joung, T., Kang, S., Lee, J., & Ahn, J. (2020). The IMO initial strategy for reducing Greenhouse Gas (GHG) emissions, and its follow-up actions towards 2050. Journal of International Maritime Safety, Environmental Affairs, and Shipping, 4(1), 1–7. - doi:10.1080/25725084.2019.1707938
Króliczewska, B., Pecka-Kiełb, E., & Bujok, J. (2023). Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and Issues. Agriculture, 13(3), 602. - doi:10.3390/agriculture13030602
Kumari, S., Dahiya, R., Naik, S., Hiloidhari, M., Thakur, I. S., Sharawat, I., & Kumari, N. (2016). Projection of methane emissions from livestock through enteric fermentation: A case study from India. Environmental Development, 20, 31–44. - doi:10.1016/j.envdev.2016.08.001
Lindstad, E., Lagemann, B., Rialland, A., Gamlem, G. M., & Valland, A. (2021). Reduction of maritime GHG emissions and the potential role of E-fuels. Transportation Research Part D: Transport and Environment, 101, 103075. - doi:10.1016/j.trd.2021.103075
Liu, D., Guo, X., & Xiao, B. (2019). What causes growth of global greenhouse gas emissions? Evidence from 40 countries. Science of the Total Environment, 661, 750–766. - doi:10.1016/j.scitotenv.2019.01.197
Mar, K. A., Unger, C., Walderdorff, L., & Butler, T. (2022). Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environmental Science & Policy, 134, 127–136. - doi:10.1016/j.envsci.2022.03.027
Meinshausen, M., Meinshausen, N., Hare, B., Raper, S. C. B., Frieler, K., Knutti, R., Frame, D. J., & Allen, M. (2009). Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature, 458(7242), 1158–1162. - doi:10.1038/nature08017
Mikhaylov, A., Moiseev, N., Алешин, К. А., & Burkhardt, T. (2020). Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues, 7(4), 2897–2913. - doi:10.9770/jesi.2020.7.4(21)
Mundra, I., & Lockley, A. (2023). Emergent methane mitigation and removal approaches: A review. Atmospheric Environment: X, 100223. - doi:10.1016/j.aeaoa.2023.100223
Rehmatulla, N., Calleya, J., & Smith, T. (2017). The implementation of technical energy efficiency and CO2 emission reduction measures in shipping. Ocean Engineering, 139, 184–197. - doi:10.1016/j.oceaneng.2017.04.029
Reisinger, A., Clark, H., Cowie, A., Emmet‐Booth, J., Fischer, C. G., Herrero, M., Howden, M., & Leahy, S. C. (2021). How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals? Philosophical Transactions of the Royal Society A, 379(2210), 20200452. - doi:10.1098/rsta.2020.0452
Revell, L. E., Stenke, A., Rozanov, E., Ball, W. T., Lossow, S., & Peter, T. (2016). The role of methane in projections of 21st century stratospheric water vapour. Atmospheric Chemistry and Physics, 16(20), 13067–13080. - doi:10.5194/acp-16-13067-2016
Sangaiah, A. K., Tirkolaee, E. B., Goli, A., & Dehnavi-Arani, S. (2019). Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem. Soft Computing, 24(11), 7885–7905. - doi:10.1007/s00500-019-04010-6
Santos, V. a. D., Da Silva, P. P., & Serrano, L. (2022). The maritime sector and its problematic decarbonization: A Systematic review of the contribution of alternative fuels. Energies, 15(10), 3571. - doi:10.3390/en15103571
Serra, P., & Fancello, G. (2020). Towards the IMO’s GHG goals: A critical overview of the perspectives and challenges of the main options for decarbonizing international shipping. Sustainability, 12(8), 3220. - doi:10.3390/su12083220
Thorpe, A. (2008). Enteric fermentation and ruminant eructation: the role (and control?) of methane in the climate change debate. Climatic Change, 93(3–4), 407–431. - doi:10.1007/s10584-008-9506-x
Xing, H., Spence, S., & Chen, H. (2020). A comprehensive review on countermeasures for CO2 emissions from ships. Renewable & Sustainable Energy Reviews, 134, 110222. - doi:10.1016/j.rser.2020.110222
Citation note:
Elmallah M., Shouman M., Elgohary M.M.: Reducing Methane Emissions on Livestock Ships in Order to Mitigate Greenhouse Gas Emissions and Promote Future Maritime Sustainability. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 18, No. 4, doi:10.12716/1001.18.04.05, pp. 797-804, 2024
Authors in other databases:
Mohamed Morsy Elgohary:
22134212700
1Yj2RLgAAAAJ