Journal is indexed in following databases:



2023 Journal Impact Factor - 0.7
2023 CiteScore - 1.4



HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Prof. Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@umg.edu.pl
Measuring Ship Collision Risk in a Dense Traffic Environment
1 Delft University of Technology, Delft, Netherlands
Times cited (SCOPUS): 3
ABSTRACT: Collision risk measurement is an essential topic for ship collision prevention. Many risk measures, i.e. DCPA/TCPA, etc., decouple the ship traffic into several pairs of ships and then evaluate the risk in each pair. This kind of measurement loses some information of the entire traffic and might include some biases in risk measurement, especially in multiple-ship scenarios. In this article, Imminent Collision Risk Assessment (ICRA) is extended, which formulates collision risk as a ratio of reachable maneuvers leading to a collision and all reachable maneuvers (velocities). Two groups of scenarios have been simulated to show the ICRA is suitable for assessing the collision risk in multiple-ship scenarios. Moreover, two improvements have been introduced: (1) a generalized velocity obstacle algorithm is introduced to collect the maneuvers leading to collisions, which considers ship dynamics; (2) the constraints of forces are considered in the formulation of reachable maneuvers. As a result, the proposed measurement helps one ship assess the risk of approaching obstacles which are difficult to avoid the collision in terms of own-ship’s dynamics and kinetic constraints.
REFERENCES
Bareiss, D., & van den Berg, J. (2015). Generalized reciprocal collision avoidance. International Journal of Robotics Research, 34(12), 1501-1514. Retrieved from ://WOS:000361973900004. doi:10.1177/0278364915576234 - doi:10.1177/0278364915576234
Chen, L. Y., Hopman, H., & Negenborn, R. R. (2018). Distributed model predictive control for vessel train formations of cooperative multi-vessel systems. Transportation Research Part C-Emerging Technologies, 92, 101-118. Retrieved from ://WOS:000438480900007. doi:10.1016/j.trc.2018.04.013 - doi:10.1016/j.trc.2018.04.013
Chen, P., Huang, Y., Mou, J., & van Gelder, P. H. A. J. M. (2018). Ship collision candidate detection method: A velocity obstacle approach. Ocean Engineering, 170, 186-198. doi:10.1016/j.oceaneng.2018.10.023 - doi:10.1016/j.oceaneng.2018.10.023
Degre, T., & Lefevre, X. (1981). A Collision Avoidance System. Journal of Navigation, 34(2), 294-302. Retrieved from ://WOS:A1981LP36500013. doi:Doi 10.1017/S0373463300021408 - doi:10.1017/S0373463300021408
Fiorini, P., & Shiller, Z. (1998). Motion planning in dynamic environments using velocity obstacles. International Journal of Robotics Research, 17(7), 760-772. Retrieved from ://WOS:000074575200006. doi:Doi 10.1177/027836499801700706 - doi:10.1177/027836499801700706
Fossen, T. I. (2002). Marine Control Systems: Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles. Trondheim, Norway: Marine Cybernetics.
Goerlandt, F., Montewka, J., Kuzmin, V., & Kujala, P. (2015). A risk-informed ship collision alert system: Framework and application. Safety Science, 77, 182-204. Retrieved from ://WOS:000355709400020. doi:10.1016/j.ssci.2015.03.015 - doi:10.1016/j.ssci.2015.03.015
Huang, Y., Gelder, P. H. A. J. M. v., & Mendel, M. B. (2016). Imminent ships collision risk assessment based on velocity obstacle. Paper presented at the ESREL 2016: Risk, Reliability and Safety: Innovating Theory and Practice, Glasgow (UK). - doi:10.1201/9781315374987-105
Huang, Y., & van Gelder, P. (2019). Time-Varying Risk Measurement for Ship Collision Prevention. Risk Anal. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30845355. doi:10.1111/risa.13293 - doi:10.1111/risa.13293
Huang, Y. M., Chen, L. Y., & van Gelder, P. H. A. J. M. (2019). Generalized velocity obstacle algorithm for preventing ship collisions at sea. Ocean Engineering, 173, 142-156. Retrieved from ://WOS:000460709700012. doi:10.1016/j.oceaneng.2018.12.053 - doi:10.1016/j.oceaneng.2018.12.053
Huang, Y. M., van Gelder, P. H. A. J. M., & Wen, Y. Q. (2018). Velocity obstacle algorithms for collision prevention at sea. Ocean Engineering, 151, 308-321. Retrieved from ://WOS:000426409000028. doi:10.1016/j.oceaneng.2018.01.001 - doi:10.1016/j.oceaneng.2018.01.001
Johansen, T. A., Perez, T., & Cristofaro, A. (2016). Ship Collision Avoidance and COLREGS Compliance Using Simulation-Based Control Behavior Selection With Predictive Hazard Assessment. Ieee Transactions on Intelligent Transportation Systems, 17(12), 3407-3422. Retrieved from ://WOS:000389344200007. doi:10.1109/Tits.2016.2551780 - doi:10.1109/TITS.2016.2551780
Lenart, A. S. (1983). Collision Threat Parameters for a New Radar Display and Plot Technique. Journal of Navigation, 36(3), 404-410. Retrieved from ://WOS:A1983RG25400007. doi:Doi 10.1017/S0373463300039758 - doi:10.1017/S0373463300039758
Moreira, L., Fossen, T. I., & Guedes Soares, C. (2007). Path following control system for a tanker ship model. Ocean Engineering, 34(14-15), 2074-2085. doi:10.1016/j.oceaneng.2007.02.005 - doi:10.1016/j.oceaneng.2007.02.005
Convention on the International Regulations for Preventing Collisions at Sea, 1972 (COLREGs), (1972).
Pedersen, E., Inoue, K., & Tsugane, M. (2003). Simulator studies on a collision avoidance display that facilitates efficient and precise assessment of evasive manoeuvres in congested waterways. Journal of Navigation, 56(3), 411-427. Retrieved from ://WOS:000186787200006. doi:10.1017/S0373463303002388 - doi:10.1017/S0373463303002388
Skjetne, R., Smogeli, Ø., & Fossen, T. I. (2004). Modeling, Identification, And Adaptive Maneuvering Of Cybership II: A Complete Design With Experiments. IFAC Proceedings Volumes, 37(10), 203-208. - doi:10.1016/S1474-6670(17)31732-9
Szlapczynski, R., & Krata, P. (2018). Determining and visualizing safe motion parameters of a ship navigating in severe weather conditions. Ocean Engineering, 158, 263-274. Retrieved from ://WOS:000433650200021. doi:10.1016/j.oceaneng.2018.03.092 - doi:10.1016/j.oceaneng.2018.03.092
Westrenen, F. v., & Ellerbroek, J. (2017). The Effect of Traffic Complexity on the Development of Near Misses on the North Sea. IEEE Transactions on Systems, Man, and Cybernetics: Systems, PP(99), 1-9. doi:10.1109/TSMC.2015.2503605 - doi:10.1109/TSMC.2015.2503605
Citation note:
Huang Y., van Gelder P.: Measuring Ship Collision Risk in a Dense Traffic Environment. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 13, No. 4, doi:10.12716/1001.13.04.05, pp. 737-744, 2019

Other publications of authors:


File downloaded 489 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony