Journal is indexed in following databases:
- SCOPUS
- Web of Science Core Collection - Journal Citation Reports
- EBSCOhost
- Directory of Open Access Journals
- TRID Database - Transportation Research Board
- Index Copernicus Journals Master List
- BazTech
- Google Scholar
2023 Journal Impact Factor - 0.7
2023 CiteScore - 1.4
ISSN 2083-6473
ISSN 2083-6481 (electronic version)
Editor-in-Chief
Associate Editor
Prof. Tomasz Neumann
Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
e-mail transnav@umg.edu.pl
Justification for the Body Construction Selection of the Unmanned Uninhabited Underwater Apparatus
1 Admiral Makarov State University of Maritime and Inland Shipping, Saint-Petersburg, Russia
ABSTRACT: The paper explores the possibility of creating an underwater apparatus in the form of a body of rotation. The form of the device will allow to effectively examine the found underwater objects, the bottom topography, measurement of other parameters of the underwater environment or objects. The devices of a different streamlined body form are considered. The apparatus in the form of a rotation body is proposed. The geometric shape of the proposed apparatus, the system of motion and control are investigated. Methods for calculating the motion parameters, methods for the vehicle positioning in the flow and the underwater vehicle movement in the vertical plane are proposed. The study confirms the ability of the underwater vehicle to move under water in a horizontal and vertical directions. The study confirms that the device possess stability at rectilinear motion, good turning ability and at the same time it is able to position itself during the flow.
KEYWORDS: Hydrodynamics, Unmanned Underwater Vehicle (UUV), Autonomous Underwater Vessel (AUV), Unmanned Uninhabited Underwater Apparatus, Underwater Object, Body Construction, Underwater Apparatus, Motion Parameters
REFERENCES
Unmanned underwater vehicles. Classification. GOST R 56960 – 2016, Moscow: Standardinform, 2016
McFarland, C. J., & Whitcomb, L. L. (2014, May). Experimental evaluation of adaptive model-based control for underwater vehicles in the presence of unmodeled actuator dynamics. In Robotics and Automation (ICRA), 2014 IEEE International Conference on (pp. 2893-2900). IEEE. DOI: 10.1109/ICRA.2014.6907275 - doi:10.1109/ICRA.2014.6907275
Chung, H., Cao, S., Philen, M., Beran, P. S., & Wang, K. G. (2018). CFD-CSD coupled analysis of underwater propulsion using a biomimetic fin-and-joint system. Computers & Fluids. (172), pp. 54–66 doi:10.1016/j.compfluid.2018.06.014. - doi:10.1016/j.compfluid.2018.06.014
Bassin A.M., Anfimov V.N. Vessel hydrodynamics L.: River transport, 1961
Alam, K., Ray, T., & Anavatti, S. G. (2014). Design and construction of an autonomous underwater vehicle. Neurocomputing, 142, 16-29. doi:10.1016/j.neucom.2013.12.055 - doi:10.1016/j.neucom.2013.12.055
Liu, Y., Fang, P., Bian, D., Zhang, H., & Wang, S. (2014). Fuzzy comprehensive evaluation for the motion performance of autonomous underwater vehicles. Ocean Engineering, 88, 568-577. doi: 10.1016/j.oceaneng.2014.03.013 - doi:10.1016/j.oceaneng.2014.03.013
Wang, X., Song, B., Wang, P., & Sun, C. (2018). Hydrofoil optimization of underwater glider using Free-Form Deformation and surrogate-based optimization. International Journal of Naval Architecture and Ocean Engineering, 6, 730-740, doi:10.1016/j.ijnaoe.2017.12.005 - doi:10.1016/j.ijnaoe.2017.12.005
Javaid, M. Y., Ovinis, M., Hashim, F. B., Maimun, A., Ahmed, Y. M., & Ullah, B. (2017). Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider. International Journal of Naval Architecture and Ocean Engineering, 9(4), 382-389. doi.:10.1016/j.ijnaoe.2016.09.010 - doi:10.1016/j.ijnaoe.2016.09.010
Yang, Y., Liu, Y., Wang, Y., Zhang, H., & Zhang, L. (2017). Dynamic modeling and motion control strategy for deep-sea hybrid-driven underwater gliders considering hull deformation and seawater density variation. Ocean Engineering, 143, 66-78. doi:10.1016/j.oceaneng.2017.07.047 - doi:10.1016/j.oceaneng.2017.07.047
Ridao, P., Carreras, M., Ribas, D., Sanz, P. J., & Oliver, G. (2015). Intervention AUVs: the next challenge. Annual Reviews in Control, 40, 227-241. Doi:10.1016/j.arcontrol.2015.09.015 - doi:10.1016/j.arcontrol.2015.09.015
Sun, C., Song, B., & Wang, P. (2015). Parametric geometric model and shape optimization of an underwater glider with blended-wing-body. International Journal of Naval Architecture and Ocean Engineering, 7(6), 995-1006. DOI: 10.1515/ijnaoe-2015-0069 - doi:10.1515/ijnaoe-2015-0069
He, Y., Song, B., & Dong, H. (2018). Multi-objective optimization design for the multi-bubble pressure cabin in BWB underwater glider. International Journal of Naval Architecture and Ocean Engineering, 10(4), 439-449. Doi: 10.1016/j.ijnaoe.2017.08.007 - doi:10.1016/j.ijnaoe.2017.08.007
Zhang, F., Zhang, F., & Tan, X. (2012, October). Steady spiraling motion of gliding robotic fish. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on (pp. 1754-1759). IEEE. doi:10.1109/iros.2012.6385860 - doi:10.1109/IROS.2012.6385860
Zhang, F., Thon, J., Thon, C., & Tan, X. (2014). Miniature underwater glider: Design and experimental results. IEEE/ASME Transactions on Mechatronics, 19(1), 394-399. doi:10.1109/tmech.2013.2279033 - doi:10.1109/TMECH.2013.2279033
Yu, P., Wang, T., Zhou, H., & Shen, C. (2018). Dynamic modeling and three-dimensional motion simulation of a disk type underwater glider. International Journal of Naval Architecture and Ocean Engineering, 10(3), 318-328. Doi:10.1016/j.ijnaoe.2017.08.002 - doi:10.1016/j.ijnaoe.2017.08.002
L. G. Loitsansky, A. I. Lurie, Theoretical mechanics course, Vol. II
Citation note:
Lebedeva M.P., Lebedev A.O., Butsanets A.A.: Justification for the Body Construction Selection of the Unmanned Uninhabited Underwater Apparatus. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 12, No. 4, doi:10.12716/1001.12.04.07, pp. 693-697, 2018