Journal is indexed in following databases:
- SCOPUS
- Web of Science Core Collection - Journal Citation Reports
- EBSCOhost
- Directory of Open Access Journals
- TRID Database - Transportation Research Board
- Index Copernicus Journals Master List
- BazTech
- Google Scholar
2023 Journal Impact Factor - 0.7
2023 CiteScore - 1.4
ISSN 2083-6473
ISSN 2083-6481 (electronic version)
Editor-in-Chief
Associate Editor
Prof. Tomasz Neumann
Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
e-mail transnav@umg.edu.pl
Foundations of GNSS Spoofing Detection and Mitigation with Distributed GNSS SDR Receiver
1 University of Ljubljana, Ljubljana, Slovenia
ABSTRACT: GNSS spoofing is an intentional and malicious action aimed at degrading and suppressing GNSS Positioning, Navigation, and Timing (PNT) services. Since it affects data and information segment of GNSS, it is considered a GNSS information (cyber-) security attack. Considering a significant and powerful threat, GNSS spoofing should be treated seriously to avoid damage and liabilities resulting from disruptions of GNSS PNT services. Here the GNSS position estimation procedure is examined for potential vulnerabilities, and the nature of and motivation for GNSS spoofing attacks exloiting the vulnerabilities assessed. A novel GNSS Spoofing Detection and Mitigation (GNSS SDM) method is proposed within the established computational and communication infrastructure, that allows for successful overcoming and classification of GNSS spoofing attacks. Proposed method is applicable without requirements for core GNSS modification, and leaves majority of user equipment easily transferable to the GNSS spoofing-free environment. Potential GNSS spoofing effects and GNSS anti-spoofing opportunities in maritime sector were given a particular attention.
KEYWORDS: Global Navigation Satellite System (GNSS), GNSS Receiver, Positioning, Navigation and Timing (PNT), Cyber Attack, Spoofing Detection and Mitigation (SDM), GNSS SDM, Spoofing, GNSS Spoofing Attack
REFERENCES
Alvarez, G, and Li, S.(2006). Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems. Int J of Bifurc and Chaos, 16(8), 2129-2151. - doi:10.1142/S0218127406015970
Babu, A M, and Singh, K J. (2013). Performance Evaluation of Chaotic Encryption Technique. Amer J of Appl Sci, 10(1), 35-41. - doi:10.3844/ajassp.2013.35.41
Bhatti, J, and Humphreys, T E. (2017). Hostile Control of Ships via False GPS Signals: Demonstration and Detection. NAVIGATION: Journal of the Institute of Navigation, 64(1), 51-66. doi: 10.1002/navi.183 - doi:10.1002/navi.183
Capparra, G et al. (2016). Navigation Message Authentication Schemes. Inside GNSS, Sep-Oct 2016, 64-73.
Filić, M, and Filjar, R. (2018a). Forecasting model of space weather-driven GNSS positioning performance. Lambert Academic Publishing. Riga, Latvia.
Filić, M, Filjar, R. (2018b). Smartphone GNSS positioning performance improvements through utilisation of Google Location API. Proc of 41 st International Convention MIPRO/CTI, 507- 510. Opatija, Croatia. doi: 10.23919/MIPRO.2018.8400087 - doi:10.23919/MIPRO.2018.8400087
Filić, M, Grubišić, L, and Filjar, R. (2018). Improvement of standard GPS position estimation algorithm through utilization of Weighted Least-Square approach. Proc of 11th Annual Baška GNSS Conference, 7-19. Baška, Krk Island, Croatia. Available at: https://www.pfri.uniri.hr/web/hr/dokumenti/zbornici-gnss/2018-GNSS-11.pdf
Filić, M.(2017).Analysis of the position estimation procedure based on the given GNSS pseudoranges in the Software-Defined Radio satellite navigation receiver (Msc thesis, in Croatian). University of Zagreb, Faculty of Science, Dept for Mathematics. Zagreb, Croatia. Available at: https://bit.ly/2DlX9O6
Gallier, J, and Quaintance, J. (2018). Fundamentals of Linear Algebra and Optimization. Dept of Computer and Information Science, University of Pennsylvania. Philadelphia, PA. Avaialble at: https://www.seas.upenn.edu/~cis515/linalg.pdf
Gustafsson, F. (2010). Statistical Sensor Fusion. Studentlitteratur. Linkoepping, Sweden.
Humphreys, T et al. (2008). Assessing the Spoofing Threat: Development of a Portable GPS Civilian Spoofer. Proc of ION GNSS 2008, 3584-3590. Savannah, GA.
Jafarnija-Jahromi, A et al. (2012). GPS Vulnerability to Spoofing Threats and a Review of Antispoofing Techniques. Int J of Nav and Obs, 2012, Article ID 127072, 16 pages. doi:10.1155/2012/127072 - doi:10.1155/2012/127072
Kerns, A J, Shepard, D P, Bhatti, J A, and Humphreys, T E. (2014a). Unmanned Aircraft Capture and Control via GPS Spoofing. J of Field Robotics, July/Augist 2014, 617-636. doi: 10.1002/rob.21513 - doi:10.1002/rob.21513
Kerns, A J, Wesson, K D, and Humphreys, T E. (2014b). A Blueprint for Civil GPS Navigation Message Authentication. Proc of IEEE/ION PLANS 2014 (8 pages). Monterey, CA. - doi:10.1109/PLANS.2014.6851385
Kuhn, M G. (2010). Signal Authentication in Trusted Satellite Navigation Receivers. Chapter in: Sadegi, A-R, and Naccache, D (eds). (2010). Towards Hardware-Intrinsic Security: Foundations and Practice. Springer Verlag. New York, NY. - doi:10.1007/978-3-642-14452-3_15
Landau, G M, and Vishkin, U. (1988). Fast String Matching with k Differences. J Comp and Syst Sci, 37, 63-78. - doi:10.1016/0022-0000(88)90045-1
Levenshtein, V I. (1966). Binary Codes Capable of Correcting Deletions, Insertions, and Reversals (translated from Russian version). Cybernetics and Control Theory, 10(8), 707-710.
Mitola, J. (1995). The Software Radio Architecture. IEEE Comm Mag, May 1995, 26-38. - doi:10.1109/35.393001
Navarro, G. (2001). A Guided Tour To Approximate String Matching. ACM Comp Surveys, 33(1), 31-88. - doi:10.1145/375360.375365
Nighswander, T et al. (2012). GPS Software Attacks. Proc of CCS 2012 Conference. Raleigh, NC. - doi:10.1145/2382196.2382245
O’Driscoll, C. (2018). What is navigation message authentication? Inside GNSS, Jan/Feb 2018, 26-31. Available at: https://bit.ly/2SEM6UC
Pecora, M et al. (1997). Fundamentals of synchronisation in chaotic systems, concepts, and applications. Chaos, 7, 520-543. - doi:10.1063/1.166278
Petrovski, I G, and Tsujii, T. (2012). Digital Satellite Navigation and Geophysics: A Practical Guide with GNSS Signal Simulator and Receiver Laboratory. Cambridge University Press. Cambridge, UK. - doi:10.1017/CBO9780511659072
Psiaki, M L, and Humphreys, T E. (2016). GNSS Spoofing and Detection. Proc of IEEE, 104(6), 1258-1270. - doi:10.1109/JPROC.2016.2526658
Schenewerk, M et al. (2016). Quality Controlling RINEX Navigation Message Files. Proc IGS Workshop: GNSS Futures. Sydney, NSW. Available at: https://bit.ly/2RwUvIu
Stewart R W et al. (2015). Software Defined Radio using MatLab & Simulink and the RTL-SDR. Strathclyde Academia Media. Glasgow, UK.
Sun, K. (2015). Chaotic Secure Communication: Principles and Technology. Walter De Gruyter GmbH. Berlin, Germany.
Tippenhauer, N O, Poepper, C, Rasmussen, K B, and Čapkun, S. (2011). On the Requirements for Successful GPS Spoofing Attacks. Proc of the 18th ACM conference on Computer and communications security, 75-86. Chicago, IL. - doi:10.1145/2046707.2046719
UK Government Office for Science. (2018). Satellite-Derived Time and Position: A Study of Critical Dependencies. HM Government of the UK and NI. Available at: https://bit.ly/2E2STnd
Vaudenay, S. (2005). A Classical Introduction to Cryptography: Applications for Communications Security. Springer Verlag. New York, NY.
Wesson, K, Rothlisberger, M, and Humphreys, T. (2012). Practical Cryptographic Civil GPS Signal Authentication. NAVIGATION: Journal of the Institute of Navigation , 59(3), 177-193. - doi:10.1002/navi.14
Wittek, P. (2014). Quantum Machine Learning: What Quantum Computing Means to Data Mining. Academic Press/Elsevier. London, UK.
Zeng, K et al. (2017). A Practical GPS Location Spoofing Attack in Road Navigation Scenario. Proc of HotMobile 2017 Conference (6 pages). Sonoma, CA - doi:10.1145/3032970.3032983
Citation note:
Filić M.: Foundations of GNSS Spoofing Detection and Mitigation with Distributed GNSS SDR Receiver. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 12, No. 4, doi:10.12716/1001.12.04.01, pp. 649-656, 2018