Journal is indexed in following databases:
- SCOPUS
- Web of Science Core Collection - Journal Citation Reports
- EBSCOhost
- Directory of Open Access Journals
- TRID Database - Transportation Research Board
- Index Copernicus Journals Master List
- BazTech
- Google Scholar
2023 Journal Impact Factor - 0.7
2023 CiteScore - 1.4
ISSN 2083-6473
ISSN 2083-6481 (electronic version)
Editor-in-Chief
Associate Editor
Prof. Tomasz Neumann
Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
e-mail transnav@umg.edu.pl
Comparative Assestment of the Effect of Changing the Breadth (B) of the Ship on the Stability of the Tugboat
1 Kalimantan Institute of Technology, Balikpapan, East Kalimantan, Indonesia
2 Hasanuddin University, Gowa, South Sulawesi, Indonesia
2 Hasanuddin University, Gowa, South Sulawesi, Indonesia
ABSTRACT: This paper reviews the effect of changing the breadth of a tugboat before and after production on ship stability. The numerical simulation method (maxurf stability) is applied. Likewise, another approach uses the Benjamin Spence (integrator) method. The standard used is IMO. Several limits become parameters for assessing the increase and decrease in ship stability. Several ship load cases are simulated to produce righting arm curves. The construction of a tugboat with a length of 28 meters is the object of this research as a case study. We compared the righting arm curve from the Maxurf stability analysis with Benjamin Spence's analysis to confirm the accuracy of the calculation results. Both methods show a significant influence regarding changes in the breadth of the tugboat. The produced righting arm curve consistently shows changes in the stability and performance of the ship. There is a reduction in the area under the GZ curve. The IMO provides three of the five standards and recommendations regarding the area under the GZ curve. The reduction of the area under the GZ curve is 17~22% for the Benjamin Spence method and 12~18% for the Maxurf stability. This percentage applies to all load-case simulations. This research contributes to providing an understanding of the effect of changes in ship width on decreasing stability.
KEYWORDS: Numerical Simulation, Maritime Safety, Ship Stability, Hydrodynamics, Tugboats, Ship Design, Load Case Analysis, Simulation Methods
REFERENCES
Langxiong Gan, L., et al., “Ship path planning based on safety potential field in inland rivers,” Ocean Eng., vol. 260, no. 111928, pp. 1–9, 2022, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801822012665. - doi:10.1016/j.oceaneng.2022.111928
Rui Li, W.H., et al., “Development of multi-functional integrated design system for ship block lifting process,” Int. J. Nav. Archit. Ocean Eng., vol. 16, no. 100593, pp. 1–11, 2024, [Online]. Available: https://pdf.sciencedirectassets.com/314106/1-s2.0-S2092678223X00028/1-s2.0-S2092678224000128/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjELb%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCIQCg%2BE9%2FYRGuF0Oh8FRV0xtHq4wHNvOfksybX9a0VBzEOAIgLEhxpbRW.
Aguiari, M., M. Gaiotti, and C. M. Rizzo. “Ship weight reduction by parametric design of hull scantling,” Ocean Eng., vol. 263, no. 112370, pp. 1–15, 2022, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801822016626. - doi:10.1016/j.oceaneng.2022.112370
Wang, L., et al., “Ship docking and undocking control with adaptive-mutation beetle swarm prediction algorithm,” Ocean Eng., vol. 251, no. 111021, pp. 1–22, 2022, [Online]. Available: https://www.sciencedirect. com/science/article/abs/pii/S0029801822004425. - doi:10.1016/j.oceaneng.2022.111021
Alamsyah, C. S. Kala, and A. I. Wulandari, “The Analysis of Engine Room Vibration of Tugboat 24 M,” Marit. Park J. Marit. Technol. Soc., vol. 1, no. 3, pp. 93–101, 2022, [Online]. Available: https://journal.unhas.ac.id/index.php/maritimepark/article/view/23608. - doi:10.20956/maritimepark.v1i3.23608
Hu, H., et al., “Study on the flooding characteristics of damaged barges with dynamic explosive deformation,” Int. J. Nav. Archit. Ocean Eng., vol. 16, no. 100589, pp. 1–15, 2024, [Online]. Available: https://www.sciencedirect. com/science/article/pii/S2092678224000086. - doi:10.1016/j.ijnaoe.2024.100589
Alamsyah, et al., “The Fatigue Life Assessment of Sideboard on Deck Barge Using Finite Element Methods,” J. Ind. Res. an Innov., vol. 16, no. 1, pp. 1–10, 2022, [Online]. Available: https://ejournal.brin.go.id/MIPI/article/view/1292. - doi:10.29122/mipi.v16i1.5201
Alamsyah, et al., “Numerical Investigation of the Laying of Airbag Arrangements on Launching Barges,” Int. J. Mar. Eng. Innov. Res., vol. 8, no. 2, pp. 202–212, 2023, [Online]. Available: https://iptek.its.ac.id/ index.php/ijmeir/article/view/16737. - doi:10.12962/j25481479.v8i2.16737
Alamsyah, et al., “An Analyze of Fatigue Life Construction of Lifting Poonton for Small Vessel,” Adv. Sci. Technol., vol. 104, pp. 95–101, 2021, [Online]. Available: https://www.scientific.net/AST.104.95. - doi:10.4028/www.scientific.net/AST.104.95
Nguyen, T.T., et al., “4DOF Maneuvering Motion of a Container Ship in Shallow Water Based on CFD Approach,” Preprints.org, pp. 1–18, 2024, doi: doi:10.20944/preprints202404.1368.v1. - doi:10.20944/preprints202404.1368.v1
Kong, M.C., and M. I. Roh, “A Method for Implementing a Ship Navigation Simulator for the Generation and Utilization of Virtual Data,” Int. J. Nav. Archit. Ocean Eng., no. 100604, 2024, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2092678224000232?ref=pdf_download&fr=RR-2&rr=89ccd6adea955f5f. - doi:10.1016/j.ijnaoe.2024.100604
Baso, S., et al., “Experimental Investigation of Added Resistance of a Ship using a Hydroelastic Body in Waves,” Int. J. Technol., vol. 13, no. 2, pp. 332–344, 2022, [Online]. Available: https://ijtech.eng.ui.ac.id/article/view/4904. - doi:10.14716/ijtech.v13i2.4904
Paroka, D., A. H. Muhammad, and S. Rahman, “Safety of an Indonesian ro-ro ferry with different weight distribution on vehicle deck,” 2022, [Online]. Available: https://pubs.aip.org/aip/acp/article-abstract/2543/1/080009/2828934/Safety-of-an-Indonesian-ro-ro-ferry-with-different. - doi:10.1063/5.0094745
Alamsyah, Z. Zulkarnaen, and Suardi, “The Stability Analyze of KM. Rejeki Baru Kharisma of Tarakan–Tanjung Selor Route,” TEKNIK, vol. 42, no. 1, pp. 52–62, 2021, [Online]. Available: https://ejournal.undip.ac.id/ index.php/teknik/article/view/31283; - doi:10.14710/teknik.v42i1.31283
Kim, J.H., et al., “Limit Protection Systems for Safety Operational Envelope of Submarine,” Int. J. Nav. Archit. Ocean Eng., no. 100598, 2024, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2092678224000177. - doi:10.1016/j.ijnaoe.2024.100598
Woo, D., and N. K. Im, “A Methodology for Simply Evaluating the Safety of a Passenger Ship Stability Using the Index for the Intact Stability Appraisal Module,” Sensors, no. 1938, pp. 1–15, 2022, [Online]. Available: https://www.mdpi.com/1424-8220/22/5/1938. - doi:10.3390/s22051938
Negi, A., S. Ganesan T., and A. Ajithkumar, “On Prepration Of Operation Measures Under The Second Generation Of Intact Stability Criteria,” 2023, [Online]. Available: https://www.researchgate.net/publication/377334701_ON_PREPRATION_OF_OPERATION_MEASURES_UNDER_THE_SECOND_GENERATION_OF_INTACT_STABILITY_CRITERIA.
IMO MSC.1/Circ.1627, Interim Guidelines on the Second Generation Intact Stability Criteria. London, 2020.
Petacco, N., G. Petkovic, and P. Gualeni, “An insight on the post-processing procedure of the Direct Stability Assessment within SGISC,” Ocean Eng., vol. 305, no. 117982, pp. 1–14, 2024, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801819303257. - doi:10.1016/j.oceaneng.2024.117982
Bulian, G., and A. Francescutto, “Level 1 vulnerability criterion for the dead ship condition: A practical methodology for embedding operational limitations,” Ocean Eng., vol. 272, no. 113868, pp. 1–12, 2023, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0029801823002524. - doi:10.1016/j.oceaneng.2023.113868
Begović, E., et al., “Simplified operational guidance for second generation intact stability criteria,” Ocean Eng., vol. 270, no. 113583, 2023, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801822028669. - doi:10.1016/j.oceaneng.2022.113583
Negi, A., and S. Ganesan T., “Assessment of Pure Loss of Stability Failure Mode for 2nd Generation Intact Stability,” 2019.
Guo, Z., et al., “Research on safety evaluation and weather routing optimization of ship based on roll dynamics and improved A* algorithm,” Int. J. Nav. Archit. Ocean Eng., no. 100605, 2024, doi: - doi:10.1016/j.ijnaoe.2024.100605
Paroka, D., et al., “Alternative Method for Stability Assessment of Indonesian Traditional Wooden Boats,” in IOP Conference Series: Earth and Environmental Science, 2022, p. 012020, [Online]. Available: https://iopscience.iop.org/article/10.1088/1755-1315/972/1/012020/meta. - doi:10.1088/1755-1315/972/1/012020
Paroka, D., et al., “Operational limitation of Indonesian traditional wooden boat in the framework of second generation intact stability criteria,” in IOP Conference Series: Earth and Environmental Science, 2021, p. 012064, [Online]. Available: https://iopscience.iop.org/article/10.1088/1755-1315/649/1/012064/meta. - doi:10.1088/1755-1315/649/1/012064
Asis, M.A., et al., “Experimental Study on Weather Criterion Applied to South Sulawesi Traditional Wooden Boats,” in The 5th International Conference on Marine Technology (SENTA 2020), 2021, pp. 1–11. - doi:10.12962/j25481479.v5i3.7728
Paroka, D., et al., “Vulnerability of Ship with a Large Breadth to Draught Ratio Against Excessive Acceleration Criteria,” in IOP Conference Series: Earth and Environmental Science, 2023, p. 012008, [Online]. Available: https://iopscience.iop.org/article/10.1088/1755-1315/1166/1/012008/meta. - doi:10.1088/1755-1315/1166/1/012008
Alamsyah, et al., “Design of Fishing Vessel of Catamaran Type In Waterways of East Kalimantan (40 GT),” in Journal of Physics: Conference Series, 2021, p. 012014, [Online]. Available: https://iopscience.iop.org/article/ 10.1088/1742-6596/1726/1/012014/meta. - doi:10.1088/1742-6596/1726/1/012014
Pawara, M.U., et al., “Bilge System Design on 500 GT Ferry for Bulukumba–Selayar Route,” in IOP Conference Series: Earth and Environmental Science, 2021, p. 012010, [Online]. Available: https://iopscience.iop.org/article/10.1088/1755-1315/921/1/012010/meta. - doi:10.1088/1755-1315/921/1/012010
Alamsyah, et al., “Stability Study of Water Ambulance in East Kalimantan Inland Waterways,” Wave J. Ilm. Teknol. Marit., vol. 17, no. 1, pp. 1–10, 2023, [Online]. Available: https://ejournal.brin.go.id/jurnalwave/article/view/186. - doi:10.55981/wave.2023.186
Younis, G., et al., “Sensitivity Analyses of Intact and Damage Stability Properties to Passenger Ship’s Dimensions and Proportions,” PORT-SAID Eng. Res. J., vol. 23, no. 1, pp. 65–73, 2019, [Online]. Available: https://www.semanticscholar.org/paper/Sensitivity-Analyses-of-Intact-and-Damage-Stability-Younis-Abdelghany/65f404927affe95b1be199be570381d9235db283. - doi:10.21608/pserj.2019.32861
Guan, G., et al., “Automatic optimal design of self-righting deck of USV based on combined optimization strategy,” Ocean Eng., vol. 217, no. 107824, 2020, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801820307988. - doi:10.1016/j.oceaneng.2020.107824
Anggara, S., et al., “The Application of 2nd Generation Intact Stability Criteria to Ship Operating in Indonesia Waterway: Pureloss Stability,” in IOP Conf. Series: Materials Science and Engineering, 2021, p. 1052, [Online]. Available: https://iopscience.iop.org/article/10.1088/1757-899X/1052/1/012050/pdf. - doi:10.1088/1757-899X/1052/1/012050
Benjamin, L., Contributions to the solution of the problem of stability. Tr. of Inst. Nav. Arch, 1884.
Spence, J.C., The Graphic calculation of the data depending on the form of ships, required for determining their stability. Tr. of Inst. Nav. Arch, 1884.
Band, E., edited by E. Foerster, Hilfsbuch für den Schiffbau. 1928.
Dudebout, P.e., “Stability of Ship,” in Architecture navale : théorie du navire : I, 1890, p. 123.
Yılmaz, H., and A. Kükner “Evaluation of cross curves of fishing vessels at the preliminary design stage,” Ocean Eng., vol. 26, no. 10, pp. 979–990, 1999, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801898000389. - doi:10.1088/1757-899X/1052/1/012050
González, M.M., et al., “Fishing vessel stability assessment system,” Ocean Eng., vol. 41, no. Februari, pp. 67–78, 2012, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801811002988. - doi:10.1016/j.oceaneng.2011.12.021
Mantari, J.L., S.R.e. Silva, and G.C. Soares “Intact stability of fishing vessels under combined action of fishing gear, beam waves and wind,” Ocean Eng., vol. 38, no. 17–18, pp. 1989–1999, 2011, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801811002125. - doi:10.1016/j.oceaneng.2011.09.018
Masamoto, S., et al., “Experimental study of the water on deck effects on the transverse stability of a fishing vessel running in stern quartering seas,” Ocean Eng., vol. 289, no. 116289, 2023, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801823026732. - doi:10.1016/j.oceaneng.2023.116289
Szozda, Z., and P. Krata, “Towards evaluation of the second generation intact stability criteria - Examination of a fishing vessel vulnerability to surf-riding, based on historical capsizing,” Ocean Eng., vol. 248, no. 110796, 2022, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801822002426. - doi:10.1016/j.oceaneng.2022.110796
Santullano, F.M.A., and A.S. Iglesias, “Stability, safety and operability of small fishing vessels,” Ocean Eng., vol. 79, no. March, pp. 81–91, 2014, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801814000201. - doi:10.1016/j.oceaneng.2014.01.011
Caamaño, L.S., M. M. González, and V.D. Casas, “On the feasibility of a real time stability assessment for fishing vessels,” Ocean Eng., vol. 159, no. July, pp. 76–87, 2018, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801818304141. - doi:10.1016/j.oceaneng.2018.04.002
Caamaño, L.S., et al., “Evaluation of onboard stability assessment techniques under real operational conditions,” Ocean Eng., vol. 258, no. 111841, 2022, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0029801822011842. - doi:10.1016/j.oceaneng.2022.111841
Davis, B., B. Colbourne, and D. Molyneux, “Analysis of fishing vessel capsizing causes and links to operator stability training,” Saferty Sci., vol. 118, no. October, pp. 355–363, 2019, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0925753519300165. - doi:10.1016/j.ssci.2019.05.017
Citation note:
Alamsyah A., Fikri M., Suardi S., Pawara M.U., Ikhwani R.J., Setiawan W., Paroka D.: Comparative Assestment of the Effect of Changing the Breadth (B) of the Ship on the Stability of the Tugboat. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 18, No. 4, doi:10.12716/1001.18.04.17, pp. 905-914, 2024
Authors in other databases:
M. Fikri:
Suardi Suardi:
J7wR1a0AAAAJ
M. Uswah Pawara:
bKgo_vwAAAAJ
R.J. Ikhwani:
Wira Setiawan:
XtFUEMMAAAAJ
D. Paroka: