Journal is indexed in following databases:



2023 Journal Impact Factor - 0.7
2023 CiteScore - 1.4



HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Prof. Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@umg.edu.pl
Comparative Analysis of Unmanned Aerial Vehicles Used in Photogrammetric Surveys
1 Gdynia Maritime University, Gdynia, Poland
2 Marine Technology Ltd., Gdynia, Poland
3 Gdańsk University of Technology, Gdańsk, Poland
ABSTRACT: There are many manufacturers on the market offering various types of Unmanned Aerial Vehicles (UAV). The multitude of drones available on the market means that the choice of a UAV for a specific application appears to be a decision problem to be solved. The aim of this article is a comparative analysis of drones used in photogrammetric surveys. The criteria for evaluating the UAVs were: availability and product support, payload (min. 5 kg), price (PLN 100,000), as well as space available for measurement modules. These are the requirements that must be met for the implementation of the INNOBAT project, the aim of which is to develop an integrated system using autonomous unmanned aerial and surface vehicles, intended for bathymetric monitoring in the coastal zone. The comparative analysis of drones was based on 27 companies producing UAV. Based on the analysis, 6 drones that met the project requirements were selected. They were: Aurelia X6 Pro, Aurelia X8 Standard LE, DroneHexa AG, FOX-C8 XT, Hercules 10 and Zoe X4. Selected UAVs differ from each other, among others, in the number of rotors, flight duration and resistance to weather conditions. Individual characteristics of drones may have a different rank depending on their application, therefore the selection of UAVs should be made after prioritisation criteria of a given project.
REFERENCES
Lewicka, O.; Specht, M.; Specht, C. Assessment of the Steering Precision of a UAV along the Flight Profiles Using a GNSS RTK Receiver. Remote Sens. 2022, 14, 6127. - doi:10.3390/rs14236127
Merkisz, J.; Nykaza, A. Risk Estimation and Risk Evaluation on Examination Flight Unmanned Aerial Vehicle Operator on Visual Line of Sight. Buses: Technique, Exploitation, Transport Systems 2016, 6, 297–307. (In Polish)
Chamola, V.; Kotesh, P.; Agarwal, A.; Naren; Gupta, N.; Guizani, M. A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques. Ad Hoc Netw. 2021, 111, 102324. - doi:10.1016/j.adhoc.2020.102324
Nex, F.; Remondino, F. UAV for 3D Mapping Applications: A Review. Appl. Geomat. 2014, 6, 1–15. - doi:10.1007/s12518-013-0120-x
Burdziakowski, P. Increasing the Geometrical and Interpretation Quality of Unmanned Aerial Vehicle Photogrammetry Products Using Super-resolution Algorithms. Remote Sens. 2020, 12, 810. - doi:10.3390/rs12050810
Frankenberger, J.R.; Huang, C.; Nouwakpo, K. Low-altitude Digital Photogrammetry Technique to Assess Ephemeral Gully Erosion. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium 2008 (IGARSS 2008), Boston, MA, USA, 6–11 July 2008. - doi:10.1109/IGARSS.2008.4779670
Hashim, K.A.; Ahmad, A.; Samad, A.M.; NizamTahar, K.; Udin, W.S. Integration of Low Altitude Aerial Terrestrial Photogrammetry Data in 3D Heritage Building Modeling. In Proceedings of the IEEE Control and System Graduate Research Colloquium 2012 (ICSGRC 2012), Shah Alam, Malaysia, 16–17 July 2012. - doi:10.1109/ICSGRC.2012.6287166
Jizhou, W.; Zongjian, L.; Chengming, L. Reconstruction of Buildings from a Single UAV Image. In Proceedings of the International Society for Photogrammetry and Remote Sensing Congress 2004 (ISPRS 2004), Zurich, Switzerland, 6–12 September 2004.
Saleri, R.; Cappellini, V.; Nony, N.; de Luca, L.; Pierrot-Deseilligny, M.; Bardiere, E.; Campi, M. UAV Photogrammetry for Archaeological Survey: The Theaters Area of Pompeii. In Proceedings of the Digital Heritage International Congress 2013 (Digital Heritage 2013), Marseille, France, 28 October–1 November 2013. - doi:10.1109/DigitalHeritage.2013.6744818
Tariq, A.; Gillani, S.M.O.A.; Qureshi, H.K.; Haneef, I. Heritage Preservation Using Aerial Imagery from Light Weight Low Cost Unmanned Aerial Vehicle (UAV). In Proceedings of the International Conference on Communication Technologies 2017 (ICCT 2017), Guayaquil, Ecuador, 6–9 November 2017. - doi:10.1109/COMTECH.2017.8065774
Fernández, T.; Pérez, J.L.; Cardenal, J.; Gómez, J.M.; Colomo, C.; Delgado, J. Analysis of Landslide Evolution Affecting Olive Groves Using UAV and Photogrammetric Techniques. Remote Sens. 2016, 8, 837. - doi:10.3390/rs8100837
Mansoori, S.A.; Al-Ruzouq, R.; Dogom, D.A.; al Shamsi, M.; Mazzm, A.A.; Aburaed, N. Photogrammetric Techniques and UAV for Drainage Pattern and Overflow Assessment in Mountainous Terrains—Hatta/UAE. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium 2019 (IGARSS 2019), Yokohama, Japan, 28 July–2 August 2019. - doi:10.1109/IGARSS.2019.8898151
Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen, I.; Imai, N.N.; et al. Individual Tree Detection and Classification with UAV-based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sens. 2017, 9, 185. - doi:10.3390/rs9030185
Song, Y.; Wang, J.; Shan, B. An Effective Leaf Area Index Estimation Method for Wheat from UAV-based Point Cloud Data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium 2019 (IGARSS 2019), Yokohama, Japan, 28 July–2 August 2019. - doi:10.1109/IGARSS.2019.8899075
Tariq, A.; Osama, S.M.; Gillani, A. Development of a Low Cost and Light Weight UAV for Photogrammetry and Precision Land Mapping Using Aerial Imagery. In Proceedings of the International Conference on Frontiers of Information Technology 2016 (FIT 2016), Islamabad, Pakistan, 19–21 December 2016. - doi:10.1109/FIT.2016.072
Chou, T.-Y.; Yeh, M.-L.; Chen, Y.-C.; Chen, Y.-H. Disaster Monitoring and Management by the Unmanned Aerial Vehicle Technology. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2010, 38, 137–142.
Haarbrink, R.B.; Koers, E. Helicopter UAV for Photogrammetry and Rapid Response. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2006, XXXVI-1/W44, 1–4.
Mohd Daud, S.M.S.; Mohd Yusof, M.Y.P.; Heo, C.C.; Khoo, L.S.; Chainchel Singh, M.K.; Mahmood, M.S.; Nawawi, H. Applications of Drone in Disaster Management: A Scoping Review. Sci. Justice 2022, 62, 30–42. - doi:10.1016/j.scijus.2021.11.002
Molina, P.; Colomina, I.; Vitoria, T.; Silva, P.F.; Skaloud, J.; Kornus, W.; Prades, R.; Aguilera, C. Searching Lost People with UAVs: The System and Results of the Close-search Project. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2012, 39, 441–446. - doi:10.5194/isprsarchives-XXXIX-B1-441-2012
Półka, M.; Ptak, S.; Kuziora, Ł. The Use of UAV’s for Search and Rescue Operations. Procedia Eng. 2017, 192, 748–752. - doi:10.1016/j.proeng.2017.06.129
Hartmann, W.; Tilch, S.; Eisenbeiss, H.; Schindler, K. Determination of the UAV Position by Automatic Processing of Thermal Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 111–116. - doi:10.5194/isprsarchives-XXXIX-B6-111-2012
Manyoky, M.; Theiler, P.; Steudler, D.; Eisenbeiss, H. Unmanned Aerial Vehicle in Cadastral Applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 38, 57–62. - doi:10.5194/isprsarchives-XXXVIII-1-C22-57-2011
Agrafiotis, P.; Skarlatos, D.; Georgopoulos, A.; Karantzalos, K. Shallow Water Bathymetry Mapping from UAV Imagery Based on Machine Learning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W10, 9–16. - doi:10.5194/isprs-archives-XLII-2-W10-9-2019
Burdziakowski, P.; Specht, C.; Dabrowski, P.S.; Specht, M.; Lewicka, O.; Makar, A. Using UAV Photogrammetry to Analyse Changes in the Coastal Zone Based on the Sopot Tombolo (Salient) Measurement Project. Sensors 2020, 20, 4000. - doi:10.3390/s20144000
Nikolakopoulos, K.G.; Lampropoulou, P.; Fakiris, E.; Sardelianos, D.; Papatheodorou, G. Synergistic Use of UAV and USV Data and Petrographic Analyses for the Investigation of Beachrock Formations: A Case Study from Syros Island, Aegean Sea, Greece. Minerals 2018, 8, 534. - doi:10.3390/min8110534
Zhang, C. An UAV-based Photogrammetric Mapping System for Road Condition Assessment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 627–632.
Berni, J.A.J.; Zarco-Tejada, P.J.; Suárez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle. Trans. Geosci. Remote Sens. 2009, 47, 722–738. - doi:10.1109/TGRS.2008.2010457
Feng, Q.; Liu, J.; Gong, J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis. Remote Sens. 2015, 7, 1074–1094. - doi:10.3390/rs70101074
Grenzdörffer, G.J.; Engel, A.; Teichert, B. The Photogrammetric Potential of Low-cost UAVs in Forestry and Agriculture. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2008, 37, 1207–1213.
Torresan, C.; Berton, A.; Carotenuto, F.; di Gennaro, S.F.; Gioli, B.; Matese, A.; Miglietta, F.; Vagnoli, C.; Zaldei, A.; Wallace, L. Forestry Applications of UAVs in Europe: A Review. Int. J. Remote Sens. 2017, 38, 2427–2447. - doi:10.1080/01431161.2016.1252477
Zhang, Y.; Wu, H.; Yang, W. Forests Growth Monitoring Based on Tree Canopy 3D Reconstruction Using UAV Aerial Photogrammetry. Forests 2019, 10, 1052. - doi:10.3390/f10121052
Alioua, A.; Djeghri, H.-E.; Cherif, M.E.T.; Senouci, S.-M.; Sedjelmaci, H. UAVs for Traffic Monitoring: A Sequential Game-based Computation Offloading/Sharing Approach. Comput. Netw. 2020, 177, 107273. - doi:10.1016/j.comnet.2020.107273
Puri, A.; Valavanis, K.P.; Kontitsis, M. Statistical Profile Generation for Traffic Monitoring Using Real-time UAV Based Video Data. In Proceedings of the 15th Mediterranean Conference on Control & Automation (MED 2007), Athens, Greece, 27–29 June 2007. - doi:10.1109/MED.2007.4433658
Ro, K.; Oh, J.-S.; Dong, L. Lessons Learned: Application of Small UAV for Urban Highway Traffic Monitoring. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 November 2007. - doi:10.2514/6.2007-596
Semsch, E.; Jakob, M.; Pavlicek, D.; Pechoucek, M. Autonomous UAV Surveillance in Complex Urban Environments. In Proceedings of the IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology 2009 (WI-IAT 2009), Washington, DC, USA, 15–18 September 2009. - doi:10.1109/WI-IAT.2009.132
Tan, Y.; Li, Y. UAV Photogrammetry-based 3D Road Distress Detection. ISPRS Int. J. Geo. Inf. 2019, 8, 409. - doi:10.3390/ijgi8090409
Kubat, M.; Smyczyński, P.; Granosik, G. Unmanned Air Vehicle Selection Criteria for Inspection and Transport Tasks. Measurement Automation Robotics 2018, 22, 23–32. (In Polish) - doi:10.14313/PAR_229/23
European Commission. Commission Delegated Regulation (EU) 2019/945 of 12 March 2019 on Unmanned Aircraft Systems and on Third-country Operators of Unmanned Aircraft Systems; European Commission: Brussels, Belgium, 2019.
Eisenbeiss, H. A Mini Unmanned Aerial Vehicle (UAV): System Overview and Image Acquisition. In Proceedings of the International Workshop on Processing and Visualization Using High Resolution Imagery, Pitsanulok, Thailand, 18–20 November 2004.
Amin, R.; Aijun, L.; Shamshirband, S. A Review of Quadrotor UAV: Control Methodologies and Performance Evaluation. Int. J. Autom. Control. 2016, 10, 87–103. - doi:10.1504/IJAAC.2016.076453
Connect ESCs and Motors. Available online: https://ardupilot.org/copter/docs/connect-escs-and-motors.html (accessed on 24 December 2022).
Drone Types: Multi-rotor vs Fixed-wing vs Single Rotor vs Hybrid VTOL. Available online: https://www.auav.com.au/articles/drone-types/ (accessed on 24 December 2022).
Hong, Y.; Fang, J.; Tao, Y. Ground Control Station Development for Autonomous UAV. In Intelligent Robotics and Applications; Xiong C., Liu H., Huang Y., Xiong Y.; Springer, Berlin, Heidelberg, Germany, 2008; Volume 5315, pp. 36–44. - doi:10.1007/978-3-540-88518-4_5
Yin, N.; Liu, R.; Zeng, B.; Liu, N. A Review: UAV-based Remote Sensing. IOP Conf. Ser.: Mater. Sci. Eng. 2019, 490, 062014. - doi:10.1088/1757-899X/490/6/062014
Drummond, C.D.; Harley, M.D.; Turner, I.L.; Matheen, N.; Glamore, W.C. UAV Applications to Coastal Engineering. In Proceedings of the Australasian Coasts & Ports Conference 2015, Auckland, New Zealand, 15–18 September 2015.
Siebert, S.; Teizer, J. Mobile 3D Mapping for Surveying Earthwork Projects Using an Unmanned Aerial Vehicle (UAV) System. Autom. Constr. 2014, 41, 1–14. - doi:10.1016/j.autcon.2014.01.004
NEXUS 800 Powered by HYPACK. Available online: https://www.hypack.com/File%20Library/Resource%20Library/Brochures%20and%20Catalogs/Nexus-800-Brochure.pdf (accessed on 24 December 2022).
Lewicka, O.; Specht, M.; Stateczny, A.; Specht, C.; Dardanelli, G.; Brčić, D.; Szostak, B.; Halicki, A.; Stateczny, M.; Widźgowski, S. Integration Data Model of the Bathymetric Monitoring System for Shallow Waterbodies Using UAV and USV Platforms. Remote Sens. 2022, 14, 4075. - doi:10.3390/rs14164075
Specht, M.; Stateczny, A.; Specht, C.; Widźgowski, S.; Lewicka, O.; Wiśniewska, M. Concept of an Innovative Autonomous Unmanned System for Bathymetric Monitoring of Shallow Waterbodies (INNOBAT System). Energies 2021, 14, 5370. - doi:10.3390/en14175370
Specht, M.; Wiśniewska, M.; Stateczny, A.; Specht, C.; Szostak, B.; Lewicka, O.; Stateczny, M.; Widźgowski, S.; Halicki, A. Analysis of Methods for Determining Shallow Waterbody Depths Based on Images Taken by Unmanned Aerial Vehicles. Sensors 2022, 22, 1844. - doi:10.3390/s22051844
Tuśnio, N.; Krzysztofik, I.; Tuśnio, J. Application of Unmanned Aerial Vehicles as a Mobile Monitoring of Fire Hazard. Problems of Mechatronics. Armament, Aviation and Safety Engineering 2014, 5, 101–114. (In Polish)
Explore DJI Products in Different Fields. Available online: https://www.dji.com/ (accessed on 24 December 2022).
Hercules 10. Available online: https://www.dronevolt.com/en/expert-solutions/hercules-10/ (accessed on 24 December 2022).
Zoe Portable Versality. Available online: https://acecoretechnologies.com/zoe/ (accessed on 24 December 2022).
DroneHexa AG. Available online: https://www.dronetools.es/index.php/dronehexa-ag (accessed on 24 December 2022).
FOX-C8 XT. Available online: https://www.onyxstar.net/fox-c8-xt/ (accessed on 24 December 2022).
UAV Systems International. Available online: https://uavsystemsinternational.com/ (accessed on 24 December 2022).
Citation note:
Specht M., Widźgowski S., Stateczny A., Specht C., Specht O.: Comparative Analysis of Unmanned Aerial Vehicles Used in Photogrammetric Surveys. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 17, No. 2, doi:10.12716/1001.17.02.21, pp. 433-443, 2023
Authors in other databases:
Szymon Widźgowski: Scopus icon57242624700

Other publications of authors:

A. Weintrit, R. Wawruch, C. Specht, L. Gucma, Z. Pietrzykowski
K. Czaplewski, C. Specht, P. Dąbrowski, M. Specht, Z. Wiśniewski, W. Koc, A. Wilk, K. Karwowski, P. Chrostowski, J. Szmagliński
A. Halicki, M. Specht, A. Stateczny, C. Specht, O. Specht

File downloaded 237 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony