Journal is indexed in following databases:
- SCOPUS
- Web of Science Core Collection - Journal Citation Reports
- EBSCOhost
- Directory of Open Access Journals
- TRID Database - Transportation Research Board
- Index Copernicus Journals Master List
- BazTech
- Google Scholar
2023 Journal Impact Factor - 0.7
2023 CiteScore - 1.4
ISSN 2083-6473
ISSN 2083-6481 (electronic version)
Editor-in-Chief
Associate Editor
Prof. Tomasz Neumann
Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
e-mail transnav@umg.edu.pl
Antifouling and Anticorrosive Protection of Renewable Energy Marine Structures with TiO2-Based Enamel
1 University of Cantabria, Santander, Spain
2 University of the Basque Country, Portugalete, Spain
2 University of the Basque Country, Portugalete, Spain
ABSTRACT: Biofouling is a significant problem that affects renewable energy marine structures (REMS), such as wind turbines and those designed for wave or tidal energy exploitation. Marine organisms, including algae, barnacles, and mollusks, attach themselves to the surface of these structures, which can lead to reduced efficiency and increased maintenance costs. In addition, biofouling can also cause corrosion, which can compromise the structural integrity of the offshore platforms. To combat this problem, several methods have been developed, including anti-fouling coatings, physical methods, and biological methods. Each method has its advantages and disadvantages, and the most effective solution often depends on the specific type of fouling and the location of the offshore structure. Effective biofouling prevention is essential for the safe and efficient operation of offshore structures and the protection of marine ecosystems. To prevent the spread of invasive species, an innovative ceramic coating has been designed and tested in accordance with ASTM-D3623 procedure. The investigation results revealed that, after four years of experimentation in a real environment, the biofouling growth observed in the splash zone of the antifouling paint was 129.76% higher than that of the titanium-based ceramic coating and it is expected that this difference will continue to grow over time.
KEYWORDS: Simulation Experiment, Biofuel, Corrosion, Harmful Aquatic Organisms and Pathogens (HAOP), Antifouling Paints, Instructional Materials, Marine Ecosystem, Renewable Energy Marine Structures (REMS)
REFERENCES
Abbas, M., & Shafiee, M. (2020). An overview of maintenance management strategies for corroded steel structures in extreme marine environments. Marine Structures, 71, 102718. - doi:10.1016/j.marstruc.2020.102718
Boullosa-Falces, D., García, S., Sanz, D., Trueba, A., & Gomez-Solaetxe, M. A. (2020). CUSUM chart method for continuous monitoring of antifouling treatment of tubular heat exchangers in open-loop cooling seawater systems. Biofouling, 36(1), 73–85. - doi:10.1080/08927014.2020.1715954
Boullosa-Falces, D., Gomez-Solaetxe, M. A., Sanchez-Varela, Z., García, S., & Trueba, A. (2019). Validation of CUSUM control chart for biofouling detection in heat exchangers. Applied Thermal Engineering, 152. - doi:10.1016/j.applthermaleng.2019.02.009
Boullosa-Falces, D., Sanz, D. S., Garcia, S., Trueba-Castañeda, L., & Trueba, A. (2022). Predicting tubular heat exchanger efficiency reduction caused by marine biofilm adhesion using CFD simulations. Biofouling, 1–11. - doi:10.1080/08927014.2022.2110493
Costa, F. C. R., Ricci, B. C., Teodoro, B., Koch, K., Drewes, J. E., & Amaral, M. C. S. (2021). Biofouling in membrane distillation applications - a review. Desalination, 516, 115241. - doi:10.1016/j.desal.2021.115241
García, S., & Trueba, A. (2018). Influence of the Reynolds number on the thermal effectiveness of tubular heat exchanger subjected to electromagnetic field-based antifouling treatment in an open once-through seawater cooling system. Applied Thermal Engineering, 140, 531–541. - doi:10.1016/j.applthermaleng.2018.05.069
García, S., Trueba, A., Boullosa-Falces, D., Islam, H., & Guedes Soares, C. (2020). Predicting ship frictional resistance due to biofouling using Reynolds-averaged Navier-Stokes simulations. Applied Ocean Research, 101. - doi:10.1016/j.apor.2020.102203
Gkatzogiannis, S., Weinert, J., Engelhardt, I., Knoedel, P., & Ummenhofer, T. (2019). Correlation of laboratory and real marine corrosion for the investigation of corrosion fatigue behaviour of steel components. International Journal of Fatigue, 126, 90–102. - doi:10.1016/j.ijfatigue.2019.04.041
Łatka, L., Pawłowski, L., Winnicki, M., Sokołowski, P., Małachowska, A., & Kozerski, S. (2020). Review of Functionally Graded Thermal Sprayed Coatings. Applied Sciences, 10(15), 5153. - doi:10.3390/app10155153
Li, H., Xin, L., Zhang, K., Yin, X., & Yu, S. (2022). Fluorine-free fabrication of robust self-cleaning and anti-corrosion superhydrophobic coating with photocatalytic function for enhanced anti-biofouling property. Surface and Coatings Technology, 438, 128406. - doi:10.1016/j.surfcoat.2022.128406
Sanz, D. S., García, S., Trueba, A., Trueba-Castañeda, L., Islam, H., Guedes Soares, C., & Boullosa-Falces, D. (2022). Numeric analysis of the biofouling impact on the ship resistance with ceramic coating on the hull. In Trends in Maritime Technology and Engineering Volume 1 (pp. 443–449). CRC Press. - doi:10.1201/9781003320272-49
Sanz, D. S., Garcia, S., Trueba, A., Vega, L. M., Trueba-Castaneda, L., & Boullosa-Falces, D. (2021). Application of ceramic coatings to minimize the frictional drag penalty on ships. OCEANS 2021: San Diego – Porto, 1–5. - doi:10.23919/OCEANS44145.2021.9706045
Schultz, M. P. (2004). Frictional Resistance of Antifouling Coating Systems. Journal of Fluids Engineering, 126(6). - doi:10.1115/1.1845552
Trueba, A., Vega, L. M., García, S., Otero, F. M., & Madariaga, E. (2016). Mitigation of marine biofouling on tubes of open rack vaporizers using electromagnetic fields. Water Science and Technology, 73(5), 1221–1229. - doi:10.2166/wst.2015.597
Wang, R., Zhou, T., Liu, J., Zhang, X., Yang, J., Hu, W., & Liu, L. (2021). Designing novel anti-biofouling coatings on titanium based on the ferroelectric-induced strategy. Materials & Design, 203, 109584. - doi:10.1016/j.matdes.2021.109584
Xia, D.-H., Qin, Z., Song, S., Macdonald, D., & Luo, J.-L. (2021). Combating marine corrosion on engineered oxide surface by repelling, blocking and capturing Cl−: A mini review. Corrosion Communications, 2, 1–7. - doi:10.1016/j.corcom.2021.09.001
Yang, Y., Wu, Q., He, Z., Jia, Z., & Zhang, X. (2019). Seismic Collapse Performance of Jacket Offshore Platforms with Time-Variant Zonal Corrosion Model. Applied Ocean Research, 84, 268–278. - doi:10.1016/j.apor.2018.11.015
Yi, P., Jia, H., Yang, X., Fan, Y., Xu, S., Li, J., Lv, M., & Chang, Y. (2023). Anti-biofouling properties of TiO2 coating with coupled effect of photocatalysis and microstructure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 656, 130357. - doi:10.1016/j.colsurfa.2022.130357
Yu, Y., Wei, Y., Li, B., Gao, H., Liu, T., Luan, X., Qiu, R., & Ouyang, Y. (2022). Bioinspired metal-organic framework-based liquid-infused surface (MOF-LIS) with corrosion and biofouling prohibition properties. Surfaces and Interfaces, 34, 102363. - doi:10.1016/j.surfin.2022.102363
Zhao, W., Yang, J., Guo, H., Xu, T., Li, Q., Wen, C., Sui, X., Lin, C., Zhang, J., & Zhang, L. (2019). Slime-resistant marine anti-biofouling coating with PVP-based copolymer in PDMS matrix. Chemical Engineering Science, 207, 790–798. - doi:10.1016/j.ces.2019.06.042
Zhou, X., Song, W., Yuan, J., Gong, Q., Zhang, H., Cao, X., & Dingwell, D. B. (2020). Thermophysical properties and cyclic lifetime of plasma sprayed SrAl 12 O 19 for thermal barrier coating applications. Journal of the American Ceramic Society, 103(10), 5599–5611. - doi:10.1111/jace.17319
Citation note:
Sanz D., García S., Trueba-Castañeda L., Boullosa-Falces D., Trueba A.: Antifouling and Anticorrosive Protection of Renewable Energy Marine Structures with TiO2-Based Enamel. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 18, No. 2, doi:10.12716/1001.18.02.21, pp. 419-424, 2024