Journal is indexed in following databases:
- SCOPUS
- Web of Science Core Collection - Journal Citation Reports
- EBSCOhost
- Directory of Open Access Journals
- TRID Database - Transportation Research Board
- Index Copernicus Journals Master List
- BazTech
- Google Scholar
2023 Journal Impact Factor - 0.7
2023 CiteScore - 1.4
ISSN 2083-6473
ISSN 2083-6481 (electronic version)
Editor-in-Chief
Associate Editor
Prof. Tomasz Neumann
Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
e-mail transnav@umg.edu.pl
Analysis of Known and Construction of New Mathematical Models of Forces on a Ship's Rudder in an Unbounded Flow
1 National University “Odessa Maritime Academy”, Odessa, Ukraine
ABSTRACT: The forces arising on the ship's rudder at different angles of attack in an unbounded flow are investigated. The components of the resulting force on the rudder are represented in terms of the rudder lift and drag forces, as well as in terms of the normal and tangential forces on the rudder. The well-known mathematical models of hydrodynamic rudder coefficients are analyzed, and their disadvantages are found. New mathematical models of hydrodynamic coefficients have been obtained, in particular, the coefficients of rudder lift and drag, which take into account the aspect ratio of the rudder, its relative thickness and can be applied to any angle of attack of the flow on the rudder. On specific examples for rudders of the NACA series, the adequacy of the proposed models and their consistency with known experimental studies are illustrated. It is shown how the rudder lift and drag change, as well as the components of the resulting force for the maximum possible range of changes in the local drift angle and the rudder angle.
KEYWORDS: Mathematical Model, Hydrodynamic Forces, Ship Rudders, Curvilinear Movement, Unbounded Flow, Dimensionless Hydrodynamic Coefficients, Angle of Attack on the Rudder, Rudder Angle
REFERENCES
Pershytz R. Y.: Dynamic control and handling of the ship. L: Sudostroenie, 1983
Sobolev G.C.: Dynamic control of ship and automation of navigation. L.: Sudostroenie, 1976
Gofman A. D.: Propulsion and steering complex and ship maneuvering. Handbook. L .: Sudostroyenie.1988.
Miyusov M. V.: Modes of operation and automation of motor vessel propulsion unit with wind propulsors. Odessa, 1996.
Kryvyi O. F.: Methods of mathematical modeling in navigation. ONMA, Odessa, 2015.
Kryvyi O. F, Miyusov M. V.: Mathematical model of movement of the vessel with auxiliary wind-propulsors, Shipping & Navigation, v. 26, pp.110-119, 2016.
Inoe S., Hirano M., Kijima K.: Hydrodynamic derivatives on ship maneuvering, Int. Shipbuilding Progress, v. 28, № 321, pp. 67-80, 1981. - doi:10.3233/ISP-1981-2832103
Kijima K.: Prediction method for ship maneuvering performance in deep and shallow waters. Presented at the Workshop on Modular Maneuvering Models, The Society of Naval Architects and Marine Engineering, v.47, pp.121 130, 1991.
Yasukawa H., Yoshimura Y.: Introduction of MMG standard method for ship manoeuvring predictions, J Mar Sci Technol, v. 20, 37–52pp, 2015. DOI 10.1007/s00773-014-0293-y - doi:10.1007/s00773-014-0293-y
Yoshimura Y., Masumoto Y.: Hydrodynamic Database and Manoeuvring Prediction Method with Medium High-Speed Merchant Ships and Fishing, International Conference on Marine Simulation and Ship Maneuverability (MARSIM 2012) pp.494-504.
Yoshimura Y., Kondo M.: Tomofumi Nakano, et al. Equivalent Simple Mathematical Model for the Manoeuvrability of Twin-propeller Ships under the same propeller-rps, Journal of the Japan Society of Naval Architects and Ocean Engineers, v.24, №.0, p.157. 2016, - doi:10.9749/jin.133.28
Wei Zhang, Zao-Jian Zou: Time domain simulations of the wave-induced motions of ships in maneuvering condition, J Mar Sci Technol, 2016, v. 21, pp. 154–166. DOI 10.1007/s00773-015-0340-3 - doi:10.1007/s00773-015-0340-3
Wei Zhang, Zao-Jian Zou, De-Heng Deng: A study on prediction of ship maneuvering in regular waves, Ocean Engineering, v. 137, pp 367-381, 2017, http://dx.doi.org/10.1016/ j.oceaneng. 2017.03.046 - doi:10.1016/j.oceaneng.2017.03.046
Erhan Aksu, Erkan Köse: Evaluation of Mathematical Models for Tankers' Maneuvering Motions, JEMS Maritime Sci, v.5 №1, pp. 95-109, 2017. DOI: 10.5505/jems.2017.52523 - doi:10.5505/jems.2017.52523
Kang D., Nagarajan V., Hasegawa K. et al: Mathematical model of single-propeller twin-rudder ship, J Mar Sci Technol, v. 13, pp.207–222, 2008, - doi:10.1007/s00773-008-0027-0
Shang H., Zhan C., Z. Liu Z.: Numerical Simulation of Ship Maneuvers through Self-Propulsion, Journal of Marine Science and Engineering, 9(9):1017, 2021. - doi:10.3390/jmse9091017
Shengke Ni., Zhengjiang Liu, and Yao Cai.: Ship Manoeuvrability-Based Simulation for Ship Navigation in Collision Situations, J. Mar. Sci. Eng. 2019, 7, 90; doi:10.3390/jmse7040090 - doi:10.3390/jmse7040090
Sutulo S. & C. Soares G.: Mathematical Models for Simulation of Maneuvering Performance of Ships, Marine Technology and Engineering, (Taylor & Francis Group, London), p 661–698, 2011
Kryvyi O. F, Miyusov M. V.: “Mathematical model of hydrodynamic characteristics on the ship's hull for any drift angles”, Advances in Marine Navigation and Safety of Sea Transportation. Taylor & Francis Group, London, UK., pp. 111-117, 2019 - doi:10.1201/9780429341939-16
Kryvyi O. F, Miyusov M. V.: “The Creation of Polynomial Models of Hydrodynamic Forces on the Hull of the Ship with the help of Multi-factor Regression Analysis”, 8 International Maritime Science Conference. IMSC 2019. Budva, Montenegro, pp.545-555 http://www. imsc2019. ucg.ac.me/IMSC2019_ BofP. pdf
Kryvyi O. F, Miyusov M. V.: Mathematical models of hydrodynamic characteristics of the ship’s propulsion complex for any drift angles, Shipping & Navigation, v. 28, pp. 88-102, 2018. DOI: 10.31653/2306-5761.27.2018.88-102 - doi:10.31653/2306-5761.27.2018.88-102
Kryvyi O. F, Miyusov M. V.: New mathematical models of longitudinal hydrodynamic forces on the ship’s hull, Shipping & Navigation, v. 30, pp. 88-89, 2020. DOI: 10.31653/2306-5761. 30. 2020.88-98 - doi:10.31653/2306-5761
Kryvyi O. F, Miyusov M. V., Kryvyi M. O.: Mathematical modelling of the operation of ship's propellers with different maneuvering modes, Shipping & Navigation, v. 32, pp. 71-88, 2021. DOI: 10.31653/2306-5761.32.2021.71-88 - doi:10.31653/2306-5761.32.2021.71-87
Molland A.F., Turnock S.R.: Wind tunnel investigation of the influence of propeller loading on ship rudder performance. Technical report, University of Southampton, Southampton, UK, 1991
Molland A.F., Turnock S.R.: Further wind tunnel investigation of the influence of propeller loading on ship rudder performance. Technical report, University of Southampton, Southampton, UK, 1992
Molland A.F., Turnock S.R.: Marine rudders and control surfaces: principles, data, design and applications, 1st edn. Elsevier Butterworth-Heinemann, Oxford, 2007 - doi:10.1016/B978-075066944-3/50000-7
Ladson CL (1988) Effects of Independent Variation of Mach and Reynolds Numbers on the Low-Speed Aerodynamic Characteristics of the NACA 0012 Airfoil Section. Technical report, Langley Research Center, Hampton, Virginia, USA, 1988
Bertram, V. Practical Ship Hydrodynamic, 2nd ed.; Elsevier Butterworth-Heinemann: Oxford, UK, 2012; p. 284.
Liu J.: Mathematical Modeling of Inland Vessel Maneuverability Considering Rudder Hydrodynamics, 2020. - doi:10.1007/978-3-030-47475-1_4
Shin Y-J, Kim M-C, Kang J-G, Kim J-W. Performance Improvement in a Wavy Twisted Rudder by Alignment of the Wave Peak. Applied Sciences. 2021; 11(20):9634. - doi:10.3390/app11209634
Veritas D.N.: Hull equipment and appendages: stern frames, rudders and steering gears. Rules for Classification of Steel Ships, pp 6–28, part 3, chapter 3, section 2, 2000
Citation note:
Kryvyi O., Miyusov M.V., Kryvyi M.: Analysis of Known and Construction of New Mathematical Models of Forces on a Ship's Rudder in an Unbounded Flow. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 17, No. 4, doi:10.12716/1001.17.04.09, pp. 831-839, 2023
Authors in other databases:
Mark Kryvyi:
58555451900