Journal is indexed in following databases:



2023 Journal Impact Factor - 0.7
2023 CiteScore - 1.4



HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Prof. Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@umg.edu.pl
An Automated Lifeboat Manifesting Embarkation System (ALMES): Optimizing Evacuation and Passenger Manifestation Via RFID/NFC
Times cited (SCOPUS): 3
ABSTRACT: Today, a significant number of quite advanced technology applications support safety at sea. To the dismay of the maritime industry, the manifestation of passengers during an evacuation scenario/case has not followed a similar path of improvement, when compared to the counterpart Life Saving Appliances (LSA) Code. Embarkation and muster proceedings are still following the similar approaches that were established during the early 1900s. There have been relatively few advances in these procedures; most often, they include manually checking-in the passengers on electronic systems, along with “on the spot” completion of check-off lists and passenger counts, allowing for an influx of potential error by the concerned personnel. Furthermore, the rely and transmission of the manifest to a Maritime Rescue Coordination Centre (MRCC) is often associated with a considerable amount of time, or even involving secondary passenger counts, after the disembarkation event has been concluded. It is understandable that a vessel with limited people on-board (tankers, bulk carriers, container vessels, etc.) can effectively be abandoned in a matter of minutes, but what happens with vessels carrying a large number of passengers and more specifically those heavily engaged with cruising activities? This paper examines the creation of an electronic manifestation system that will be able to automatically record the passengers during lifeboat embarkation. This proposed system will employ the use of Near-Field Communication (NFC) and/or (Radio-frequency identification) RFID bracelets, that are already utilized within the cruise industry. It will record relevant passenger and crew data, upon their boarding on the designated lifeboat, through readers installed on the parallel sides of the entryway. The data will be displayed in electronic tablet devices to the lifeboat leaders, as well as to the Master of the vessel in real-time. This will allow for an accurate representation of the evacuation process in any given moment. Furthermore, a complete “snapshot” of that information can also be directly transmitted to the MRCC via an automated message and without any further human intervention, or even stored locally aboard the lifeboats used for the evacuation and the ship’s Vessel Data Recorder (VDR).
REFERENCES
Agroudy, N.E., Georgiades, G., Joram, N., Ellinger, F.: RSSI overboard localization system for safe evacuation of large passengers ships. In: 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME). pp. 177–180 (2017). - doi:10.1109/PRIME.2017.7974136
Akyuz, E.: Quantitative human error assessment during abandon ship procedures in maritime transportation. Ocean Engineering. 120, 21–29 (2016). - doi:10.1016/j.oceaneng.2016.05.017
Akyuz, E., Celik, M.: Utilisation of cognitive map in modelling human error in marine accident analysis and prevention. Safety Science. 70, 19–28 (2014). - doi:10.1016/j.ssci.2014.05.004
Andreadakis, A., Sloane, F.: Interview with Second Officer Ioannis Agathos. (2021).
Casareale, C., Bernardini, G., Bartolucci, A., Marincioni, F., D’Orazio, M.: Cruise ships like buildings: Wayfinding solutions to improve emergency evacuation. Building Simulation. 10, 6, 989–1003 (2017). - doi:10.1007/s12273-017-0381-0
Dalaklis, D.: Safety and Security in Shipping Operations. In: Visvikis, I.D. and Panayides, P.M. (eds.) Shipping Operations Management. pp. 197–213 Springer International Publishing AG (2017).
Giustiniano, L., Cunha, M.P. e, Clegg, S.: The dark side of organizational improvisation: Lessons from the sinking of Costa Concordia. Business Horizons. 59, 2, 223–232 (2016). - doi:10.1016/j.bushor.2015.11.007
International Maritime Organisation: Life-Saving Appliances Including LSA Code (2010 Edition). (2010).
International Maritime Organisation: Safety of Life at Sea (2020 Edition). (2010).
Jørgensen, H.D., May, M.: Human factors management of passenger ship evacuation. In: RINA conference. pp. 145–156 , London, UK (2002).
Joseph, A., Dalaklis, D.: The international convention for the safety of life at sea: highlighting interrelations of measures towards effective risk mitigation. null. 5, 1, 1–11 (2021). - doi:10.1080/25725084.2021.1880766
Kobyliński, L.K.: Rational Approach To Ship Safety Requirements. WIT Transactions on The Built Environment. 27, 11 (1997). - doi:10.2495/MTECH970011
Kwee-Meier, S.Th., Bützler, J.E., Schlick, C.: Development and validation of a technology acceptance model for safety-enhancing, wearable locating systems. null. 35, 5, 394–409 (2016). - doi:10.1080/0144929X.2016.1141986
Lee, D., Kim, H., Park, J.-H., Park, B.-J.: The current status and future issues in human evacuation from ships. Safety Science. 41, 10, 861–876 (2003). - doi:10.1016/S0925-7535(02)00046-2
Mišković, T., Ristov, P., Markić, Z.: RFID Control System for the Embarkation/Disembarkation of Passengers and Vehicles on/from Ferries. Transactions on Maritime Science. 05, 02, 161–171 (2016). - doi:10.7225/toms.v05.n02.007
Ortega Piris, A., Diaz Ruiz, E., Pérez Labajos, C., Navarro Morales, A.: Implementation of a rfid system on ships for passenger and crew location. Presented at the Maritime Transport VIII : proceedings of the 8th International Conference on Maritime Transport : Technology, Innovation and Research : Maritime Transport’20 September (2020).
Pallikaris, A., Katsoulis, G., Dalaklis, D.: Electronic Navigation Equipment and Electronic Chart Display Information Systems. Eugenides Foundation Publishing, Athens, Greece (2016).
Schröder-Hinrichs, J.-U., Hollnagel, E., Baldauf, M.: From Titanic to Costa Concordia—a century of lessons not learned. WMU Journal of Maritime Affairs. 11, 2, 151–167 (2012). - doi:10.1007/s13437-012-0032-3
Stefanidis, F., Boulougouris, E., Vassalos, D.: Modern trends in ship evacuation. Presented at the Sustainable and Safe Passenger Ships: HIMT2020 , Athens, Greece (2020).
Tikkanen, A.: Costa Concordia disaster, https://www.britannica.com/event/Costa-Concordia-disaster, last accessed 2021/01/06.
Vanem, E., Ellis, J.: Evaluating the cost-effectiveness of a monitoring system for improved evacuation from passenger ships. Safety Science. 48, 6, 788–802 (2010). - doi:10.1016/j.ssci.2010.02.014
Vassalos, D., Christiansen, G., Kim, H.S., Bole, M., Majumder, J.: Evacuability of Passenger Ships at Sea By. (2002).
Wang, X., Liu, Z., Zhao, Z., Wang, J., Loughney, S., Wang, H.: Passengers’ likely behaviour based on demographic difference during an emergency evacuation in a Ro-Ro passenger ship. Safety Science. 129, 104803 (2020). - doi:10.1016/j.ssci.2020.104803
Citation note:
Andreadakis A., Sloane T.F., Dalaklis D.: An Automated Lifeboat Manifesting Embarkation System (ALMES): Optimizing Evacuation and Passenger Manifestation Via RFID/NFC. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 15, No. 1, doi:10.12716/1001.15.01.23, pp. 215-221, 2021
Authors in other databases:
Antonios Andreadakis: Scopus icon57224859382
Tabor Forrester Sloane:

Other publications of authors:


File downloaded 294 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony