705
5 CONCLUSION
Inthispaper,anintelligentshipvisionenhancement
system based on deep learning framework is
proposed to solve the problem of ship tracking and
recognition for intelligent navigation visual
perception tasks. It effectively overcomes the
shortcomings of different illumination, different
weather, wind and wave conditions and artificial
participation.
Future research work will integrate
radar, infrared and AIS data to obtain more long‐
distance marine vessel monitoring and real‐time
displayoftheshipʹsgeographicallocationunderpoor
visualconditions.
ACKNOWLEDGEMENTS
Theresearchpresentedinthispaperhasbeensupportedby
ShanghaiShuguangPlanProject(15SG44),NationalNatural
Science Foundation of China (51709167), Natural Science
Foundation of Shanghai (18ZR1417100), Shanghai Pujiang
Program(18PJD017),andShanghaiScienceandTechnology
Innovation Action Plan (18DZ1206101), and the Young
TeacherTrainingProgramofShanghaiMunicipalEducation
Commission(ZZHS18053).
REFERENCE
[1]AlbrechtT,WestGA,TanT,etal.2011.Visualmaritime
attention using multiple low‐level features and naive
bayes classification: Digital Image Computing
Techniques and Applications (DICTA), International
Conferenceon[C].IEEE.
[2]Bergamasco F, Benetazzo A, Barbariol F, et al. 2016.
Multi‐view horizon‐driven sea plane
estimation for
stereowaveimagingonmovi ngvessels[J].Computers&
Geosciences95:105‐117.
[3]Bolme D S , Beveridge J R , Draper B A , et al. 2010.
Visual object tracking using adaptive correlation
filters[J].
[4]Chen Weiqiang, Chen Jun, Zhang Wei, et al. 2016.
Robusttrackingcontrolfor
shipheadingadaptiveneural
network[J].JournalofShipEngineering(09):15‐20.
[5]ChenWenting,LiuNantong,JiKefeng,etal.2014.Ship
Recognition for SAR Image Based on Multi‐Classifier
Fusion[J].RemoteSensingInformation(5):90‐95.
[6]Chen Xiaojun, Yang Zhangqiong. 2017. Application of
Support Vector Regression and Game
Theory in Ship
Moving Position Tracking [J].Ship science and
technology(08):19‐21.
[7]He K , Zhang X , Ren S , et al. 2015. Deep Residual
LearningforImageRecognition[J].
[8]HongZ,ChenZ,WangC,etal.2015.Multi‐storetracker
(muster): A cognitive psychology inspired approach
to
objecttracking: Proceedings of the IEEE Conference on
ComputerVisionandPatternRecognition,[C].
[9]Hong Z,Mei X,Prokhorov D, et al. 2013. Tracking via
Robust Multi‐task Multi‐view Joint Sparse
Representation[J]:649‐656.
[10]JIANG Shaofeng, WANG Chao, WU Fan, et al. 2014.
COSMO‐SkyMedImageCommercialShip
Classification
Algorithm Based on Structural Feature Analysis[J].
Remote Sensing Technology and Application.29(4):607‐
615.
[11]Johansson G. 1973. Visual perception of biological
motion and a model for its analysis[J]. Perception &
Psychophysics14(2):201‐211.
[12]Kim D, Kim H, Jung S, et al. 2015. A vision‐based
detection algorithm for moving
jellyfish in underwater
environment: Ubiquitous Robots and Ambient
Intelligence(URAI),201512thInternational Conference
on[C].IEEE.
[13]Lecun Y, Bengio Y, Hinton G. 2015. Deep learning[J].
Nature521(7553):436.
[14]Li X, Shang M, Hao J, et al. 2016. Accelerating fish
detection and recognition by sharing CNNs with
objectnesslearning:OCEANS
2016‐Shanghai[C].IEEE.
[15]Mayerschönberger V, Cukier K. 2014. Big data: A
revolution that will transform how we live, work, and
think.[J]. Mathematics & Computer Education
47(17):181‐183.
[16]Merchant N D, Witt M J, Blondel P, et al. 2012.
Assessing sound exposure from shipping in coastal
waters using
a single hydrophone and Automatic
Identification System (AIS) data[J]. Marine Pollution
Bulletin64(7):1320‐1329.
[17]MoeslundTB,GranumE.2001.ASurveyofComputer
Vision‐Based Human Motion Capture[J]. Computer
Vision&ImageUnderstanding81(3):231‐268.
[18]RobardsM,SilberG,AdamsJ, etal.2016.Conservation
science and policy
applications of the marine vessel
Automatic Identification System (AIS)—a review[J]
92(1):75‐103.
[19]Russell S J, Norvig P. 2010. Artificial intelligence: a
modern approach[J]. Applied Mechanics & Materials
263(5):2829‐2833.
[20]SangL,WallA,MaoZ,etal.2015.Anovelmethodfor
restoringthe trajectoryoftheinland
waterwayship by
usingAISdata[J]110:183‐194.
[21]ShuY,DaamenW,LigteringenH,etal.2017.Influence
of external conditions and vessel encounters on vessel
behavior in ports and waterways using Automatic
IdentificationSystemdata[J]131:1‐14.
[22]TʹJampensR,HernandezF,VandecasteeleF,etal.2016.
Automatic
detection, tracking and counting of birds in
marine video content: Image Processing Theory Tools
and Applications (IPTA), 2016 6th International
Conferenceon[C].IEEE.
[23]Xiao F, Han L, Gulijk C V, et al. 2015. Comparison
study on AIS data of ship traffic behavior[J]. Ocean
Engineering95(3):84‐93.
[24]Xu
C,LuC,LiangX,etal.2016.Multi‐lossRegularized
DeepNeuralNetwork[J].IEEETransactionsonCircuits
&SystemsforVideoTechnology26(12):2273‐2283.
[25]ZhangZ,ZhangXW,LiangRY,etal.2010.Research
and Implementation of Ship‐lock Monitoring System
Based on SVM and Visual Perception[J].
Modern
ElectronicsTechnique.
[26]ZouZ,ShiZ.2016.Shipdetectioninspaceborneoptical
image with SVD networks[J]. IEEE Transactions on
GeoscienceandRemoteSensing54(10):5832‐5845.