428
Mutual Dispersion[m2]
distance
[km]
2
2
1
1
n
i
i
σ xx
n
_______________________________________________
k=0,1 k=0,25 k=0,5 k=1 k=2
10 1,32642 5,930898 33,16072 132,6436 530,5801
20 1,32372 8,433033 33,88081 135,5228 542,0887
30 12,3276 77,04804 308,1918 1232,764 4931,039
40 22,0634 137,8965 551,5859 2206,340 8825,339
50 58,380 269,329 1459,51 5838,06 23352,1
_______________________________________________
Figure4.FO5CoordinateandPositionFindErrors.
It is clear from the simulation results that
positioningerrorsoftheunknownLO,whichispart
of the relative navigation system in the air
communicationsnetwork,dependontheaccuracyof
the LO coordinates that the unknown object uses to
determine its position. Also, the accuracy of
measuringitsdistance
fromLO,which an unknown
objectusestodetermineitslocation.
4 CONCLUSION
One of the basic requirements for positioning LO is
accuracy. In this paper, we describe various LO
positioningmethodswithemphasisontheiraccuracy.
The different methods differ from one another in
what the electromagnetic wave (propagation
signal)
parameterismeasured.Thesemethodscanbeusedto
create new navigation systems, whether satellite or
alternate.Themainfocusisonthelong‐distance
FO positioning method that works in the air
communications network. The analysis made shows
that if we want to determine the FO position that
works
intheaircommunicationsnetwork,weneedto
knowthepositionsofatleastfourotherFOsfromthat
network.Itisclearfromthesimulationresultsthatthe
distance method is suitable for determining the FO
position.It isusedtodetermineabsolutepositionas
wellasrelativepositioning.
Theexactpositioningofthismethodistomaintain
the maximum time synchronization of time basic
individualuserswhoworkintheaircommunications
network. The accuracy of the satellite‐level
synchronization is satisfactory because the satellites
have precision atomic clocks and the entire
synchronizationisensuredbyacontrolsegment
that
is bound to world reference time norms. In the
AviationCommunicationsNetwork,itisnecessaryto
ensure the synchronization of this network with the
accuracyofthenanosecondseries.Onepossibilityto
ensure synchronization of the air communications
network is to use the currently available atomic
norms.Itis
clearfromthesimulationresultsthatthe
accuracy of the relative navigation system also
dependsonthegeometryoftheairtrafficnetwork.At
greater distances between FO, the positioning error
substantiallyincreases. Modeling has confirmed that
atthedistanceofanunknownFOfromotherairline
communications network users that
is greater than
30.0 km, the precision of determining its position is
inadequate.
REFERENCES
Awnage, J.L. & Grafarend, E.W. 2004. Solving Algebraic
Computational Problems in Geodesy and Geoinformatics.
Germany: Springer, 2004. Kap. 9.2, Ranging by Global
PositioningSystem,p.107‐116.ISBN3‐540‐23425‐X.
Bloudicek, R., Rydlo, S.: Example of scientific manuscript
improvement of the teaching process at the subject air
trafficmanagement
systemsbymeansofsimulatorsand
simulation programs 2012. Transport Means‐
Proceedings of the International Conference, pp. 333‐
335.
Dzunda,M. &Kotianova, N.2016.The Accuracy of Relative
Navigation System. International Conference on
Engineering Science and Production Management
(Espm)Location:SlovakiaDate:Apr.16‐17,Pages:369‐
375Published:
2016.
Džunda,M.&Kotianová,N.2015.Selectedaspectsofapplying
communication technology to air transportation.
International Conference on Communication
Technology and Application, June 28‐29, 2015 in
Bangkok,Thailand.Pages:1‐7.
Dzunda,M.&KotianovaN.&Holota,K.&EtAl.2015.Use
of Passive Surveillance Systems in
Aviation. [in:] A.
Weintrit (ed.), Activities in Navigation: Marine
NavigationandSafetyofSeaTransportation.Pages:249‐
253.Published:2015.
Dzunda, M. & Hrban, A. 1998. Accuracy of The Passive
Tracking Systems. 12th International Conference On
Microwaves And Radar (Mikon98), Krakow, Poland.
Date:May20‐22,1998.Pages:216‐220
Published:1998.
Kotianova,N. 2017. Relative Navigation in The Air
Communications Network. Dissertation, LF TUKE in
Košice2017.138p.
Pavolová, H. & Tobisová, A. 2013. The Model of Supplier
QualityManagementinaTransportCompany.NaseMore.
Vol.60,No.5‐6,pp.123‐126.ISSN0469‐6255.
Rozenberg, R. & Szabo,
S. & Šebeščáková, I. 2014.
Comparison of Fsc and Lcc and Their Market Share in
Aviation. In: International Review of Aerospace
Engineering(Irease).Vol. 7, No. 5 (2014), p. 149‐154.
ISSN1973‐7459.
Sabo, J. & Korba, P. & Antoško, M. & Sekelová, M. &
Rozenberg,R.2017.
GnssApproachonSmallRegionalnon
Public Airports. In: Sgem 2017. Sofia 2017, p. 559‐564.
ISBN978‐619‐7408‐03‐4.
Šebeščáková, I. & Melníková, L. & Socha,Ľ. 2013. The
Assessment of The Contribution of Aviation to the National
Economy.In:ExclusiveE‐Journal.Roč.1,Č
.2,2013,S.1‐
10.Issn1339‐4509.
Vagner,J.Pappová,E.2014.ComparisonofRadarSimulator
for Air Traffic Control. In: Nase More. Vol. 61, no. 1‐2
(2013),p.31‐35.‐ISSN0469‐6255.