737
speedsaresignificant.Inthispaper,themodelsofthe
windparametersfluctuationshavebeenpresented.In
order to describe the absolute values of the
differences between the forecasted wind directions
anddirectionscollectedattheTrzebieżstationinthe
SatBałtyk system, the exponential distribution has
been employed. In
turn, in order to establish the
absolute values of the differences between the
forecasted wind speeds and the speeds recorded at
the Trzebież station in the SatBałtyk system, the
extremevaluedistributionhasbeenused.
The fluctuations’ models in the forcing fields
(wind and surface currents) on the Szczecin
Lagoon
have been presented in order to employ the Monte
Carlo techniques. These techniques will generate an
ensemblewhichyieldsanestimatelocalizationofthe
survivorevaluatingoveratimeperiod.
ACKNOWLEDGEMENTS
TheauthorswouldliketothanktheMarineOfficein
SzczecinandtheInstituteofMeteorologyandWater
Management
forsharingthedataonwindparameters
and water level for the chosen meteorological
stations.
This research outcome has been achieved under
thegrantNo4/S/INM/15finansedfromasubsidyof
the Ministry of Science and Higher Education for
statutoryactivities.
REFERENCES
[1]Biuro Hydrograficzne Marynarki Wojennej. Locja
Bałtyku.WybrzeżePolskie(502),2009.WydanieIX.
[2]Borkowski,P.,Inferenceengineinanintelligentshipcourse‐
keeping system. Computational Intelligence and
Neuroscience,2017.2561383:p.1‐9.
[3]Breivik,
.,Allen,A.A.,Anoperationalsearchandrescue
modelfortheNorwegianSeaandtheNorthSea.Journalof
MarineSystems,2008.69(1–2):p.99–113.
[4]Bugajski,G.,Pleskacz,K.,Modyfikacjametodywyznaczania
obszaru poszukiwa ń podczas akcji ratowniczych na akwenie
otwartym. Autobusy, Technika, Eksploatacja, Systemy
Transportowe,2016.12:
p.861‐864.
[5]Burciu, Z., Niezawodność akcji ratowniczej w transporcie
morskim. Oficyna Wydawnicza Politechniki
Warszawskiej.Warszawa,2012.
[6]Cho,K.H.,Li,Y.,Wang,H.,Park,K.S.,Choi,J.Y.,Shin,
K.I., Kwon, J.I., Development and Validation of an
Operational Search and Rescue Modeling System for the
YellowSea and the
East and South China Seas.Journal of
AtmosphericandOceanicTechnology,2014. 31:p.197–
215.
[7]DiMaio,A.,Martin,M.V.,Sorgente,R.,Evaluationofthe
searchandrescue LEEWAYmodelinthe TyrrhenianSea:a
new point of view. Natural Hazards and Earth System
Sciences,2016.16,
p:1979–1997.
[8]IAMSAR MANUAL, International Aeronautical and
MaritimeSearchandRescueManual,MissionCo‐ordination,
II.IMO/ICAO.London,2013.
[9]Kasyk, L., Kijewska, M., Kowalewski, M., Leyk, M.,
Pyrchla, J., Modeling of Surface currents impact in the
harbor using graph theory. Scientific Journals of the
MarineUniversityofSzczecin,
2016.46,p:189–196.
[10]Kijewska, M., Route prediction for a person in water
drifting in chosen basins using graph theory. Scientific
JournalsoftheMarineUniversityofSzczecin,2017.50,
p:45–51.
[11]Kowalewski,K.,Kowalewska‐Kalkowska,H.,Sensivity
oftheBaltic Sealevelpredictiontospatialmodel
resolution.
JournalofMarineSystems,2017.173,p:101‐113.
[12]Kowalewski, K., Kowalewska‐Kalkowska, H.,
Performance of operationally calculated hydrodynamic
forecastsduringstormsurgesinthePomeranianBayandthe
Szczecin Lagoon. Boreal Environment Research, 2011.
16(SupplementA):p.27–41.
[13]Li,W.,Liu,W.Y.,Methodsof
determiningsearch area for
SARatsea.Preceedingsof13
th
InternationalConference
onServiceSystemsandServiceManagement.China.24–
26June2016.p.359–368.
[14]Pietrzykowski, Z., Borkowski, P., Wołejsza, P.,
NAVDEC – navigational decision support system on a sea‐
going vessel. Scientific Journals of the Maritime
UniversityofSzczecin,2012.30:p.102–108.
[15]PM3D. Available online:
www.model.ocean.univ.gda.pl (accessed on 12 June
2017).
[16]Pyrchla, J., Kowalewski, M., Leyk‐Wesołowska, M.,
Pyrchla,K., Integration and Visualization of the Results of
Hydrodynamic Models in the Maritime Network – Centric
GIS of Gulf of Gdańsk. Proceedings of 2016 Baltic
GeodeticCongress.Poland.2–4June2016. p.159–164.
[17]Pyrchla,K.,Pyrchla,J.,Kasyk,L.,Kijewska,M.,Leyk‐
Wesołowska, M., Study of the Flow Dynamics of Surface
Water Masses in the Area of the Coastal Gulf of Gdańsk.
Proceedings of 2017 Baltic Geodetic Congress. Poland.
22–25June2017.p.326–330.
[18]SAR. Available online: www.sar.gov.pl/news/3/type
(accessedon26July2018).
[19]SatBałtyk. Available online:
www.satbaltyk.iopan.gda.pl(accessedon12June2017).
[20]Shchekinova, E., Kumkar, Y., Coppini, G., Numerical
reconstructionoftrajectory ofsmall‐sizesurfacedrifterinthe
Mediterraneansea.OceanDynamics,2016.66:p.153–161
[21]Stanichny, S.V., Kubryakov, A.A., Soloviev, D.M.,
Parameterization
ofsurfacewind‐drivencurrentsintheBlack
Sea using drifters, wind, and altimetry data. Ocean
Dynamics,2016.66:p.1–10.
[22]Szczecin Lagoon, Projekty unijne. Modernizacja toru
wodnego. Available online:
http://www.ums.gov.pl/projekty_unijne/ModernizacjaT
oruWodnego/mapa_mod_toru.jpg (accessed on 08 June
2018).
[23]Tu,E.,Zhang,G.,Rachmawati,L.,Rajabally,E.,Huang,
G.‐B..,
Exploiting AIS data for Intelligent Maritime
Navigation: A Comprehensive Survey From Data to
Methodology. IEEE Transactions on Intelligent
TransportationSystems,2018.19(5):p.1559–1581.
[24]Vettor, R., Soares, C.G., Computational system for
planning search and rescue operations at sea. Procedia
ComputerScience,2015.51:p.2848–2853.
[25]Wang,
S.,Nie,H.,Shi,C.,Adriftingtrajectoryprediction
model based on object shape and stochastic motion features.
JournalofHydrodynamics,2015.26:p.951–959.
[26]WINDY. Available online: www.windy.com (accessed
on12June2017).
[27]Zhang, J., F., Teixeira, A.P., Soares, C.G., Yan, X.P.,
Probabilisticmodellingofthe
driftingtrajectoryofanobject
under the effect of wind and current for marine search and
rescue.OceanEngineering,2017.129:p.253–264.