670
shows different nature of troposphere‐driven GPS
positioningerrorduringatropicalcyclone,compared
with the case of quiet tropospheric weather. While
essential statistical parameters of GPS positioning
error components remain balanced and stable
regardless of tropospheric conditions, statistical
propertiesofGPSpositioningerrorcomponentsvary
largely in relation to
the nature and intensity of
tropospheric disturbance. Different nature of
troposphericdelay(i. e. tropospheric contribution to
GPSpseudorangemeasurementerror)reflectsonthe
over‐allGPSpositioningaccuracy(Filić,Filjar,2018).
Deterioration may not affect oceanic cruise
navigation, due to its low requirements on position
estimation accuracy, but
impacts significantly
performance of numerous technology and socio‐
economic GPS‐relying services for remote oceanic
island communities. With restricted budget for
expensive infrastructure, those communities utilise
satellitenavigation extensively. Thus, anyimpact on
stability and reliability of GPS‐based services may
underminecommunitiesalreadyfacingchallengesof
climatechange, and potential
devastating impact on
community’s survival. Considering results of this
study, recommendations may be proposed on: (i)
continuousobservationsofmeteorologicalparameters
related to GPS positioning performance, (ii) timely
deliveryofmeteorologicalobservationparametersto
GPS receivers for more effective tropospheric error
mitigation; and (iii) continuous research on user
equipment adaptation
to positioning environment
dynamics in a sense of intelligent mitigation of the
effectsofpotentialdisruptions.
Weintendtocontinueourresearchonthesubject
through examination of cases with transitional
periodsbetweenextremeconditions,andtheirimpact
onGPStroposphericdelayandGPSpositioningerror
dynamics in continuous aim to
develop an adaptive
positioning estimation model capable of detecting
anomalies in positioning environment and
responding to their mitigation without affecting the
GNSSpositioningperformanceandqualityofGNSS‐
basedapplications.
REFERENCE
Box,GEP,Jenkins,G,andReinsel,GC.(2008).TimeSeries
Analysis,ForecastingandControl(4
th
ed).JohnWiley&
Sons.Hoboken,NJ.
Filić,M.(2018).Ondevelopmentoftheforecastingmodelof
GNSS positioning performance degradation due to
spaceweatherandionosphericconditions.Proc2
nd
URSI
AT‐RASC (4 pages, electronic format). Gran Canaria,
Spain. Available at:
http://www.atrasc.com/content/stick/papers/URSISumm
aryPaperMFilic.pdf
Filić, M, and Filjar, R. (2018). Forecasting model of space
weather‐drivenGNSSpositioningperformance.Lambert
AcademicPublishing.Riga,Latvia.
Filić,M, Grubišić, L, andFiljar, R. (2018).Improvement of
standard GPS position estimation
algorithm through
utilizationof Weighted Least‐Sqaureapproach. Proc of
11thAnnual Baška GNSS Conference, 7‐19. Baška, Krk
Island, Croatia. Available at:
https://www.pfri.uniri.hr/web/hr/dokumenti/zbornici‐
gnss/2018‐GNSS‐11.pdf
Filić,M,Filjar,R,Weng,J.(2018).AnIGS‐basedsimulatorof
ionospheric conditions for GNSS positioning quality
assessment. Coordinates, 14(1), 31
‐34. Available at:
http://mycoordinates.org/an‐igs‐based‐simulator‐of‐
ionospheric‐conditions‐for‐gnss‐positioning‐quality‐
assessment/
Filić, M, Filjar, R, and Ruotsalainen, L. (2016). An SDR‐
based Study of Multi‐GNSS Positioning Performance
During Fast‐developing Space Weather Storm.
TransNav, 10, 395‐400. doi: 10.12716/1001.10.03.03.
Availableat:http://bit.ly/2fxAvph.
HowesE
L,Birchenough,S,andLincoln,S.(2018).Effectsof
Climate Change Relevant to the Pacific Islands (in
Pacific Marine Climate Change Report Card).
CommonwelathMarineEconomiesProgramme(Funded
by HM Government of the United Kingdom). London,
UK. Available at: https://bit.ly/2qdI2gZ (HM
GovernmentoftheUKinternetresource).
IGS. (2018). International GNSS
Service (IGS) Network.
Availableat:http://www.igs.org/network
IGS, RINEX Working Group, and RTCM‐SC104. (2015).
RINEX: The Receiver Independent Exchange Format
(version 3.03). Available at:
ftp://igs.org/pub/data/format/rinex303.pdf
NASA. (2018). IGS Archive of daily GNSS observations,
hosted by NASA. Available at:
ftp://cddis.gsfc.nasa.gov/gnss/data/daily
OpenStreetMap. (2018). Data base of world spatial data
under Open Database
Licence. Cartography provided
undertheCreativeCommonsAttribution‐ShareAlike2.0
license.Availableat:https://www.openstreetmap.org
Oxley, A. (2017). Uncertainties in GPS Positioning: A
mathematical discourse. Academic Press/Elsevier.
London,UK.
Parkinson, B W, and Spilker, Jr, J J (eds). (1996). Global
Positioning System: Theory and Applications (Vol. I.).
AIAA.Washington,DC.
Porretta,M
etal.(2016):GNSSEvolutionsforMaritime:An
Incremental Approach. Inside GNSS, May/June, 2016,
54‐62. Available at:
http://insidegnss.com/auto/mayjune16‐WP.pdf
R‐project team. (2017). The R project for Statistical
Computing (software, documentation, and books).
Availableat:https://www.r‐project.org.
Shumway, R H, and Stoffer, D S. (2017). Time Series
Analysisand
ItsApplicationsWithRExamples(Fourth
Edition).SpringerVerlag.Cham,Switzerland.Available
at:https://www.stat.pitt.edu/stoffer/tsa4/tsa4.pdf
StormScienceAustralia.(2018).TropicalCycloneOlainthe
EasternCoralSea.StormScienceAustralia.Availableat:
http://bit.ly/2BJkunK
Stull, R. (2017). Practical Meteorology: An Algebra‐based
SurveyofAtmosphericScience(version1.02b). Univ. of
British Columbia.
Vancouver, BC.Available at:
https://bit.ly/2QXfG66
Takasu, T. (2013). RTKLIB: An Open Source Program
Package for GNSS Positioning. Software and
documentationavailableat:http://www.rtklib.com
TheEconomist.(2018).StormyWeather:StormsinAmerica
and the Pacific are evidence of climate change. The
Economist UK ed), Sep 22, 2018, 52‐54.Available at:
https://econ.st/2MPZwZJ
Thomas, M et al. (2011). Global Navigation Space Systems:
reliance and vulnerabilities. Royal Academy of Engineering.
London, UK. Available at: http://bit.ly/1vrIenu
UK Government Office for Science. (2018). Satellite-Derived
Time and Position: A Study of Critical Dependencies. HM
Government of the UK and NI. Available at:
https://bit.ly/2E2STnd
Eurocontrol, and IfEN. (1998). WGS 84 Implementation
Manual.Availableat:http://bit. ly/2wM4xPn
Yao, X, and Rhee, C. (2013). The economics of climate
change in the Pacific. Asian Development Bank.
Mandaluyong City, Philippines. Available at:
https://bit.ly/2pcpCi9