547
N
k
kNNp
N
k
S
kNp
S
N
k
pkNNp
N
k
S
k
N
k
S
k
p
N
p
N
p
N
p
N
p
ssRs
RssRR
1
)(
1
1
2
0
0
)(
1
00
)(
)()()1(
(9)
Thesumofauto‐correlationfunctionsforallrows
canbewrittenas:
NN
p
N
p
N
N
p
N
N
p
N
p
pp
N
k
kNNp
N
k
S
k
p
N
k
S
k
p
S
N
p
N
k
S
k
ssR
RRR
2
1
2
11
)(
1
1
2
1
1
1
2
1
0
2
10
)(
)()1()1(
(10)
where
2
00
)(
)()1(
Np
SS
sRR
N
p
N
p
. Considering (7),
expression(10)mayberewritteninthenextform:
N
N
N
p
N
N
p
N
N
p
N
p
p
Np
p
Np
N
k
kN
p
N
k
S
k
p
S
N
p
N
k
S
k
sss
RRR
2
12
2
11
)(
2
1
1
1
2
1
0
2
10
1
1
1
)()1()1(
2
(11)
According to (2) and (1) expression in square
brackets in (11) is equal zero
N
N
N
p
Np
p
Np
ss
2
12
2
1
1
1
=0. Next term in (11) is
also equal zero
1
2
1
1
1
2
N
p
N
k
)N(
p
S
k
R =0‐according our
supposingforN.Expression(11)canbewrittenas
N
p
)N(
p
S
N
p
N
k
)N(
p
S
k
RR
2
1
1
0
2
10
1
(12)
Compare with (6). Thus, group‐complementary
propertyofbinarysequencesforN+1isproved.
So, expressions (1), (2) for direct construction of
binary sequences with group‐complementary
propertyaretrueforanysequenceslengthN.
3 REDUCTIONOFTHENUMBERSEQUENCESIN
SET
Above‐cited direct method of
construction gives the
possibility to get binary sequences with group‐
complementary property for any length N. The
numberofsequencesinsetforthatisequal
.
It does mean that the set of
sequences with
lengthNaregroup‐complementary.Butinsideofthis
setexistalotanothersetswiththesamelengthsand
withlessnumbersequencesinthem.Forexampleif
N=4,soP=8.Sequenceswithordernumbersp=3and
p=5createcomplementarypair,thesameforp=2and
p=8.
Sequenceswithordernumbersp=1,p=4,p=6,p=7
create the group‐complementary set of four signals,
andwithordernumbers p=1,p=3,p=4,p=5,p=6,p=7–
of six signals. For N=5, the number of sequences is
P=16. Sequences with order numbers p=2, p=5, p=10,
p=13 create the group‐complementary
set of four
signals; the same we have for sequences with order
numbers p=3, p=8, p=11, p=16. Sequences with order
numbers p=1, p=4, p=6, p=7, p=9, p=12, p=14, p=15
creategroup‐complementarysetofeightsignals.And
soon.ForN=7wehaveP=64andwilldiscussonlya
part
ofsequenceswithreductionnumbersignalsina
set. Sequences with order numbers p=5, p=27, p=50,
p=59;p=17,p=23,p=45,p=47;p=5,p=12,p=50,p=53;
p=2, p=14, p=47, p=58; create group‐complementary
sets with four signals in each. Sequences with order
numbersp=8, p=9,p=19,p=30,p=34,p=47,p=53,p=60;
p=1, p=12, p=23, p=30, p=40, p=45, p=50, p=59; create
group complementary sets which contain eight
signalsineach.Usinggivenlengthandcorresponding
ordernumbersonecangetthegroup‐complementary
sequencesonthebaseofexpressions(2)and(1).For
example, in the case of sequences length N=7 and
ordernumberssequencesinsetp=17,p=23,p=45,p=47;
whichmentionedabove,onthebase(2),(1)canbegot
np
z ,
np
s :
17
0, 0, 0,0, 0,1, 0
n
z
;
17
1, 1, 1,1,1, 1, 1
n
s
;n=0 6;p=17;
23
0, 0,1,1, 0,1, 0
n
z
;
23
1, 1, 1, 1, 1, 1, 1
n
s
;n=0 6;p=23;
45
0, 0,0,1,1, 0,1
n
z
;
45
1,1, 1, 1, 1,1, 1
n
s
;n=0 6;p=45;
47
0, 0,1,1,1, 0,1
n
z
;
47
1, 1, 1, 1, 1, 1. 1
n
s
;n=0 6;p=47.
For N=10 we have P=512. Sequences with order
numbers p=201, p=390; p=236, p=320; create
complementary pairs. From (2), (1) can be got for
thesecases:
201
0, 0, 0, 0,1, 0, 0,1,1, 0
n
z
;
201
1,1, 1,1, 1,1, 1, 1, 1, 1
n
s
;n=0
9;p=201;
390
0,1, 0,1, 0, 0, 0, 0,1, 0
n
z
;
390
1, 1, 1, 1, 1, 1,1, 1, 1, 1
n
s
;n=0
9;p=390;
236
0, 1,1, 0, 1, 0,1, 1,1, 0
n
z
;
236
1, 1, 1, 1, 1, 1, 1, 1, 1,1
n
s
;n=0
9;
p=236;
320
1, 1, 1, 1, 1, 1, 1, 1,1 1
n
z
;
320
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
n
s
;
n=0
9;p=320.
Obtained complementary pairs coincides with
Golay complementary pairs for N=10 [3]. Sequences
withordernumbersp=32,p=107,p=133,p=218,p=232,
p=280, p=298, p=373, p=387, p=496; create the group‐
complementary set of ten signals with length N=10.
ForN=11sequenceswithordernumbersp=245,p=421,
p=581,p=789; create the group‐
complementary set of
four signals and with order numbers p=1, p=184,
p=234,p=286,p=367,p=467,p=571,p=584,p=733,p=882,
p=908,p=933;create the group‐complementarysetof
twelve signals. And so on. So, these examples show
thatforanylengthN inside general set withP=
1
2
N
exist a lot of sets with less number signals in it. As
example, N=18 contain the set of four group‐
complementarysequences:
[1‐11‐11111‐1‐111‐11111‐1]
[1‐11‐11111‐1‐1‐1‐11‐1‐1‐1‐11]
[1111‐111‐1‐1111‐11‐1‐1‐11]
[1111‐111‐
1‐11‐1‐11‐1111‐1],
Many others sets of sequences with group‐
complementary properties and different number
sequencesineachgroupexistinN=18generalset(the
numbersofsequencesineachgrouparealwayseven
numbers). For N=24 general set of sequences also
contain a lot of sets with group‐complementary
property with different number sequences. We can
demonstrateoneofthosesetswithfoursequencesin
it:
[11‐11111‐111‐111‐1‐1‐111‐11111‐1]
[11‐11111‐111‐111‐1‐1‐1‐1‐11‐1‐1‐1‐11]