532
Figure9.Sensitivityfunctionsofthematrixgamecontrolof
ownshipinrestrictedvisibility atsea accordingto MG_rv
algorithm.
5 CONCLUSIONS
Thealgorithm ofmultistep cooperativematrix game
takes into consideration the Rules of the COLREGs
Rules and the advance time of the manoeuvre
approximating shipʹs dynamic properties and
evaluates the final deviation of the real trajectory
fromreferencevalue.
Sensitivityofthefinalgamepayment:
isthe
leastforchangesofthedurationofonestage
tis least relative to the sampling period of the
trajectoryandadvancetimemanoeuvre,
most is relative to changes of the own and met
shipsspeedandcourse,
it grows with the degree of playing character of
the control process and with the quantity of
admissiblestrategies.
trajectory and for changes of the advance time
manoeuvre.
Thematrixgamecontrolalgorithmis,inacertain
sense, formal model of the thinking process of a
navigator steeringthe ship’s movement and making
upmanoeuvringdecisions.
Thereforethey
maybeappliedintheconstruction
of a new model of ARPA system containing a
computer supporting the navigator’s decision
making.
REFERENCES
EslamiM. 1994.Theory of sensitivityin dynamic systems.
Berlin:Springer‐Verlag.
Isaacs R. 1965. Differential games. New York: John Wiley
andSons.
KulaK.2014.Cascadecontrolsystemoffinstabilizers.Proc.
XIX Conference Methods and Models in Automation
andRobotics,MMAR,Miedzyzdroje:868‐873.
Lazarowska A. 2017. A new
deterministic approach in a
decision support system for ship’s trajectory planning.
ExpertSystemswithApplications,Vol.71:469‐478.
Lebkowski A. 2018. Design of an autonomous transport
system for coastal areas. TransNav – International
JournalonMarineNavigationandSafetyatSea,Vol.12,
Issue1:117‐124.
Lisowski J.
2012. Game control methods in avoidance of
shipscollisions.PolishMaritimeResearchVol.19,No.1:
3‐10.
Lisowski J. 2013. Sensitivity of computer support game
algorithmsofsafeshipcontrol.InternationalJournalof
Applied Mathematics and Computer Science. Vol. 23,
Issue2:439‐446.
Lisowski J. 2014. Comparison of dynamic games
in
application to safe ship control. Polish Maritime
Research,Vol.21,No.3:3‐12.
Lisowski J. 2014. Optimization‐supported decision‐making
in the marine game environment. Solid State
Phenomena,Vol.210:215‐22.
Lisowski J. 2016. Analysis of methods of determining the
safeshiptrajectory.TransNav–InternationalJournal
on
Marine Navigation and Safety at Sea, Vol. 10, Issue 2:
223‐228.
Malecki J. 2013. Fuzzy track‐keeping steering designfor a
precisecontroloftheship.SolidStatePhenomena,Vol.
197:140‐147.
ModarresM.2006.Riskanalysisinengineering.BocaRaton:
TaylorandFrancisGroup.
Mohamed‐Seghir M.
2016. Computational intelligence
method for ship trajectory planning. Proc. XXI
Conference Methods and Models in Automation and
Robotics,MMAR,Miedzyzdroje:636‐640.
NisanN.,RoughgardenT.,TardosE.&VaziraniV.V.2007.
Algorithmic game theory. New York: Cambridge
UniversityPress.
Osborne M.J. 2004. An introduction to game theory. New
York:
OxfordUniversityPress.
RosenwasserE.&YusupovR.2000.Sensitivityofautomatic
controlsystems.BocaRaton:CRCPress.
Szlapczynski R. & Szlapczynska J. 2016. An analysis of
domain‐based ship collision risk parameters. Ocean
Engineering,Vol.126:47‐56.
Tomera M. 2012. Nonlinear observers design for
multivariable ship motion control. Polish
Maritime
Research,Vol.19,Issue1:50‐56.
Wierzbicki A. 1977. Models and sensitivity of control
systems(inPolish).Warszawa:WNT.
Zak A. 2013. Trajectory tracking control of underwater
vehicles.SolidStatePhenomena,Vol.196:156‐166.