
317
Ferry
Length
overall
[m]
Draft
[m]
Fn‐Surface
areaofthe
above‐water
body[m2]
Fp‐Surface
areaofthe
underwater
part[m2]
k=Fp/Fn
Scandinavia 243,3 6,30 6293,49 1447,25 0,2299
Figure6.Scandinavia ferry‐contourandcharacteristicsof
the surface of the longitudinal section above and
underwaterpartofthehull.
Ferry
Length
overall
[m]
Draft
[m]
Fn‐Surfacearea
oftheabove‐
waterbody[m2]
Fp‐Surface
areaofthe
underwater
part[m2]
k=Fp/Fn
Germanica 240,1 6,15 5814,48 1328,50 0,2285
Figure7. Germanica ferry‐contour and characteristics of
the surface of the longitudinal section above and
underwaterpartofthehull.
Inordertocarryouttheanalysisofsafeapproach
anddepartureofshipsinbothvariantsofthelocation
of the ramp at the ferry terminal in the port of
Gdynia, the simulation model PCS1 (Fig. 8) was
selected. The characteristics and contours of the
simulationmodelareshownin
Figure8.
Ferry
Length
overall[m]
Draft
[m]
Fn‐Surfacearea
oftheabove‐
waterbody[m2]
Fp‐Surfaceareaof
theunderwaterpart
[m2]
PCS1 290,00 8,00 6172,00 1417
Figure8. Simulation model PCS1‐contour and
characteristics of the surface of the longitudinal section
aboveandunderwaterpartofthehull.
4 WINDLOADS
The main component of the resistance when
maneuveringtheferryatlowspeedsistheforceofair
pressure on the above‐water part of the shipʹs hull
(waveresistanceandfrictioncanbeneglected).Itcan
becalculatedbytheformula[3,4]:
Rpow.=0,5*Cpow.*
ρpow.*V2pow.*Fn
where:
Rpow.‐ airresistance(kG)
Cpow.‐ coefficientofairresistance(forthehull1.0,
forsimplesuperstructures1.0to1.2)
ρpow.‐ airdensity1,226kg/m3attemperaturę20C
andnormalatmosphericpressure1013hPa;
Vpow.‐relativeairvelocity(m/s);
Fn‐surfaceofthelongitudinalshipʹssection
(m2)
After entering the averaged values Cpow. = 1,1,
andρpow. = 1,226 kg/m3, the above can be
simplifiedtotheform[3,4]:
Rpow.=0,069*V2pow.*Fn[kG]
Thisformula wasusedtocalculatewindpressure
forcesonthesurfaceofthelongitudinalshipʹssection.
In case of mooring and unmooring maneuvers
without the assistance of tugs, in the most
unfavorable directions and wind force, the power
generatedbythethrustersandmainenginesmustbe
greaterthanthecalculatedwindpressureforcesofthe
characteristic vessels and the simulation model
considered. A summary of the
calculated wind
pressureforcesisshowninTable1.
Table1.Listofwindpressureforces
_______________________________________________
FerryWind WindWind
Force speedpressure
[
o
B] [m/s]force[KG]
_______________________________________________
Scandinavia 4
o
5,5‐7,9 27101,6
5
o
8,0‐10,7 49717,4
6
o
10,8‐13,882698,7
7
o
13,9‐15,0 97766,4
Stena4
o
5,5‐7,9 29169,0
5
o
8,0‐10,7 53510,1
6
o
10,8‐13,889007,4
7
o
13,9‐15,0 105160,0
Germanica 4
o
5,5‐7,9 25038,5
5
o
8,0‐10,7 45933,3
6
o
10,8‐13,876404,4
7
o
13,9‐15,0 90269,8
ModelPCS1 4
o
7,926578,4
5
o
10,748757,6
6
o
13,881102,3
7
o
15,095820,3
_______________________________________________
Comparison of the longitudinal sectional area of
theunderwaterpartoftheFphulltothelongitudinal
sectionoftheabovewatersectionoftheFndetermine
(k = Fp / Fn) that the adopted simulation model
differsinanon‐significantwayfrommodelswiththe
characteristicparameterspresentedin
Table1(onlyin
thecaseoftheStenaferry,about12%).Theresultsfor
the model adopted for simulation and maneuvers
reliably correspond to a ferry with the characteristic
parameterspresentedinTable1.
The selected model corresponds to the
characteristicferries (similardimensions,theratio of
thesurface
areaofthewaterbodytothesurfacearea
of the underwater part and characteristics of
maneuveringdevices).Theshortageofpowerof the
bow thruster on the bow in the selected model in
relation to the set of characteristic ferries is
compensated by the application in which the
simulatoris
equipped.Similarly,thepowershortage
ontheboltshasbeensupplemented. The simulation