135
1 INTRODUCTION
The Oder Waterway (ODW) for many years will
remain the most important waterway for inland
waterborne transportation in Poland. Despite the
considerable degradation it is still possible to
transport cargoes from Szczecin to waterways of
Western Europe, on the Gliwice Canal, and on the
canalized stretch of the Oder River from Silesia
(Koźle)toWrocław.Constructi
onandcommissioning
oftheweirandlockinMalczycewillenabletorestore
thenavigationalongtheentireOderWaterway.
TheOderRiverconnectsfivesignificantregionsof
Poland: Silesia, Opole Voivodeship, Lower Silesia,
Lubusz Land and Western Pomerania. In year 2012
thoseregionsprovidedalm
ost30%ofgrossdomestic
product(GDP).Inyear2014theshareofthoseregions
in the sold production of industry was 32% [7].
Besides the bulk cargo (coal, aggregates) that
traditionally was transported on the ODW, also a
numberofcargoesthatrequirespecialorganisationof
tra
nsportationgravitatestowardstheriver.Thereisa
considerablesupplyofdangerouscargoesinformof
products from large chemical plants located by the
Oder River and equipped with own loading berths
that,atthemoment,arenotbeingutilised.Thereisa
great number of factories of car industry, fact
ories
producing household appliances, equipment for
energy production or chemical equipment, in the
regions connected with the Oder River. Many
productsfromabovebranchesarehighlydemanding
in terms of packing, packaging, composing of
integratedfreightunitsaswellasintermsofsafetyin
transportation. These products are perfectly fit for
mult
imodal transportation in containers. Inland
waterborne transportation is preferred for safety
reason.
In economy of agglomerations located by the
ODW the trade plays important role. It concerns in
particulartheagglomerationsofSilesia,Wrocławand
Szczecin. Theyare important centres of distribution,
storageandlogistics.Thereisanumberofcontainer
termi
nalsthere,includingthefollowing[11]:
Logistic Conditions of Container Transportation on the
Oder Waterway
J
.Kulczyk&T.Tabaczek
WrocławUniversityofTechnology,Wrocław,Poland
ABSTRACT: The paper contains the analysis of the possibility of container transportation on the Oder
Waterway(theGliwiceCanal, thecanalizedstretchoftheOderRiver,andtheregulatedstretchoftheOder
River), on the assumption that the waterway complies with conditions of class IIIEuropean waterway. The
analysisisba
sedontheconceptofmodernmotorcargovessel,adjustedtohydraulicparametersofwaterway.
Thevesselis designed forballastingwhenpassingunder bridges.The amount ofballastwater thatenables
transportationoftwotiersofcontainersisgiven.Thecostsofwaterbornetra
nsportationarecomparedtothe
costsofrailtransportationofcontainersonselectedshippingroutes.
http://www.transnav.eu
the International Journal
on Marine Navigation
and Safety of Sea Transportation
Volume 12
Number 1
March 2018
DOI:10.12716/1001.12.01.15
136
SilesianLogisticsCentreinGliwicePort,handling
capacityof150,000TEUperyear;
PCC Intermodal terminal in Brzeg Dolny,
handlingcapacityof110,000TEUperyear;
PCC Intermodal terminal in Frankfurt (Oder),
handlingcapacityof100,000TEUperyear.
TheagglomerationofSzczecinisconnectedtothe
SzczecinandŚwinoujścieSeaportswheretheamount
of reloaded containers is continuously growing. In
year 2016 there were 90,869 TEU reloaded only in
Szczecin. It was about 55% more in comparison to
year2010.5%growthwasreportedinfirst7months
ofyear2016incomparisontocorresponding
periodof
year2015[12].
New container terminals are going to be built in
KędzierzynKoźleandintheregionofWrocław[1].
The OderRiver is the part of a natural transport
corridor connecting the Baltic Sea and the Adriatic
Sea.Missingisthestretchconnectingthe
OderRiver
andtheDanubeRiver.Aftertheperiodofstagnation
theproblemofconstructionoftheOderElbeDanube
Canalisregardedasprioritywithinthedevelopment
of an integrated European system of inland
waterways.
The basicfeature of any transport corridor is the
possibilityofshipmentusingmore
thanonemeanof
transportation. In such situation the advantages of
eachmeanoftransportationmaybeutilized.Thanthe
optimization of transportation tasks in the transport
corridorispossible.
Inlandwaterbornetransportationisdistinguished
bynumerousadvantages,especiallyincomparisonto
road transportation. The ma in feature is its
environment friendliness.
It is the consequence of
considerably lower demand for energy to carry out
the transport work. Thereby the emission of
greenhouse gases and total external costs are much
lower. According tothe EU records the demand for
primary energy in transportation of containers
amounts[9]:
trucksandlorries:0.49‐
0.50MJ/tkm,
railtransportation:0.37‐0.40MJ/tkm,
inland waterborne transportation: 0.14‐0.29
MJ/tkm.
In many cases, as in the case of largesize cargo,
the inland waterborne transportation is the only
possible to implement. Such kind of cargo in road
transportationrequiresthededicatedplatformtrailers
andthe arranged
transit route. Inthe course ofride
thetrafficrestrictionsforotherroaduserstakeplace
andmaycausethedisorganisationoftrafficonlarge
area. Such disturbances can be avoided when the
largesizecargoistransportedbywater.
On the 22nd of July 2016 the Government of the
Republic of Poland adopted the documentʺThe
assumptions to plan of development of the inland
waterways in Poland in years 2016‐2020 with the
perspective till year 2030ʺ („Założenia do planów
rozwojuśródlądowych dróg wodnych w Polsce na
lata20162020zperspektywądoroku2030”).Inlong
termperspectivedefinedarethefollowingtargets:
thedevelopmentoftheOderRivertocomplywith
therequirementsofVaclasswaterway,
the construction of the stretch of OderElbe
DanubeCanalontheterritory ofPoland,
theconstructionoftheSilesianCanal.
In order to achieve the parameters of Va class
waterway along the entire Oder Waterway 21 more
weirsandlocksmustbebuiltdownstreamofthelock
inMalczycethatnowadaysisunderconstruction[10].
The concept of the cascade of the Oder River is
presentedinFig.1.
In shortterm perspective planned are: the
modernisationoftheGliwiceCanal,theconstruction
oftwonewweirsandlocksdownstreamofMalczyce,
i.e. in Lubiąż and inŚcinawa, and the upgrade of
locks on the canalized stretch of the Oder River to
meettheparametersoftheVaclasswaterway.
Figure1. The cascade of the Oder River as a Va class
waterway[4]
The technology of container transportation
proposed in this paper is based on the assumption
thatthe operatingconditions correspondto
conditionson the IIIclass waterway only.However,
theoperationoftheproposednewmotorcargovessel
would be possible even at present operating
conditions.
2 SUPPLYOFCONTAINERSGRAVITATING
TOWARDS
THEODW
TheestimatesofcargogravitatingtowardstheODW
published before the year 2000 usually did not
includethecontainerisedcargo.
In this paper it is assumed that about 20 million
tonnesofcargocanbeshippedontheODWperyear.
Such amount of cargo was already shipped
in year
1980.Thenthebulkcargowasprevailing.
In the structure of transportation on the Rhine
Riverinyears2013‐2015theamountofcontainerized
cargowas15.3to15.8millionoftonnes,thatis7.9%to
8.3% of total amount of shipped cargo [2]. At the
average weight of
cargo of 7.2 tonnes per TEU it
yieldsabout2.2millionofTEU.
In European Union, in year 2015 the share of
containerised cargo in total tonnekilometres was
10.3%. The estimates for container transportation in
year 2016 suggested the growth by 10% in
comparisontoyear2015[3].
For
the purpose of the following considerations
one may assume that the structureof transportation
on the Oder River will not differ significantly from
that in Western Europe. Assuming the 8% share of
137
goods in containers, and the above estimated total
supply of cargo of 20 million of tonnes, about 1.6
million of tonnes of cargo may be transported in
containers on the ODW. At the average weight of
cargoof7.2tonnesperTEU[2]thereisanestimateof
220,000 TEU
per year. This number of TEU exceeds
thenumberofcontainershandledintheSzczecinand
Świnoujście Seaports considerably (90,869 TEU in
year 206 [12]). However, besides the Szczecin and
Świnoujście Seaports, significant for container
transportation on the ODW is also the western
direction to the waterways
in other EU countries,
includingtheportinHamburg.Inyear2013560,200
of TEU werereloaded in Hamburg inconnection to
shipmenttoandfromPoland [8]. 20% of them were
nextmovedtothesouthofPoland,themajoritytothe
regions located by the Oder River. The estimated
averageweightofcargoinasingleTEUwasabout10
tonnes. Assuming that 10% of containers that are
movedfromHamburgtothesouthofPolandmaybe
taken by waterborne transportation, the next 11,000
TEUareestimatedtogravitatetotheODW.
3 THEODERWATERWAY‐HYDROLOGICAND
HYDRAULICCONDITIONS
Hydrologic and hydraulic conditions are the basic
factors that determine the functional parameters of
awaterway.Theyinclude:
the degree of river regulation (canalized river,
regulatedriver,orafreelyrunningriver),
parameters of hydraulic structures (horizontal
dimensionsoflocks),
airclearancesunderbridges,
width
offairway,
radiiofmeanders,
transitdepthsofwater,
minimumandmaximumdischargeinariver,
icingperiods,
pausesduetohighorlowwaterlevel,
workinghoursofhydraulicdevices.
Theabovefactorsdeterminetheclassofwaterway
and,inconsequence,themain
particularsofships.
In the case of canalized rivers and navigation
canalsthehydraulicconditionsareconstant.Shipsare
designed to have the maximum acceptable
dimensions.Maindimensionsdependonthedepthof
water in canal, the area of crosssection, and the
dimensions of locks. Due authorities determine the
maximum
ship speed on waterway, particularly in
canals. Speed limits are intended for protection of
banks against the destruction due to wash waves
generatedbygoingvessel,andforprotectionofvessel
against grounding. Usually the speed limit in
navigationcanalisnothigherthan10km/h.
TheODWis,and
willremainforverynextyears,
themostimportanttransportwaterwayinPoland.Is
characterizedbydiversehydraulicstructures,varying
functionalparametersalongitslength,and,generally,
by the significant wear and tear of structures.
Considering:
thedifferentfunctionalparametersofwaterway,
thediversehydrologicconditions,
thefunctions
ofwaterway,
the need and potential for development of
navigationconditions,
theODWisdividedintothefollowingstretches:
1 the Gliwice Canal with 6 doubled locks of
dimensions72mx12m;
2 the canalized Oder River from Koźle to Brzeg
Dolny with 23 locks including
20 locks of
dimensions 187 m x 9.6 m and 3 locks of
dimensions225mx12m;
3 theregulatedOderRiverfromBrzegDolnytothe
mouthoftheLusatianNeisseRiver(afterbuilding
and commissioning of the weir and lock in
Malczycethisstretchwillrangefrom
Malczyceto
themouthoftheLusatianNeisse);
4 the regulated Oder River from the mouth of the
Lusatian Neisse River tothe mouth of theWarta
River;
5 the regulated Oder River from the mouth of the
WartaRivertoSzczecin.
Therulesofclassificationandtheclassesof
Polish
waterwaysaregivenintheregulationoftheCouncil
ofMinistersofthe7thofMay2002.Table1showsthe
classesofindividualstretchesoftheODW.
Table1.ClassificationofindividualstretchesoftheODW
_______________________________________________
5. TheOderRiverandtheGliwice LengthandClass
Canalthekilometre
ofriver
_______________________________________________
a)theGliwiceCanal41.2kmIII
b)fromthelockinKędzierzyn‐ 183.5km III
KoźletothelockinBrzegDolny fromkm98.1
(thecanalizedstretchoftheOder tokm281.6
River)
c)fromthelockinBrzegDolny 260.8km II
tothemouthoftheLusatian fromkm281.6
NeisseRivertokm542.4
d)fromthemouthoftheLusatian 75.2kmII
NeisseRivertothemouthofthe fromkm542.4
WartaRivertokm617.6
e)fromthemouthoftheWarta 79.4
kmIII
RivertoOgnica(totheSzwedt fromkm617.6
Canal)tokm697
f)fromOgnicatotheKlucz44.6kmVb
UstowoCutandfartherasthe fromkm697
RegalicaRivertoitsestuaryto tokm741.6
theLakeDąbie
6.The
WesternOderRiverfromthe 36.5kmVb
weirinWiduchowatotheborder fromkm0
ofinternalseawatersincluding tokm36.5
theKluczUstowoCut
_______________________________________________
OwnelaborationbasedonthemapʺInlandwaterwaysin
Polandʺ,asofyear2007,NationalWaterManagement
Authority(AnnexNo.2totheregulationoftheCouncilof
Ministersofthe7thofMay2002)
According to the classification of waterways
bindinginPolandtheclassIII waterway shallallow
for the operation of vessels of the following main
particulars:
lengthofmotorship≤70m,
lengthofpushedbargetrain≤118m‐132m,
beam≤8.2m‐9.0m,
draught≤
1.6‐2.0m.
The regulation ofthe Council of Ministers of the
7th of May 2002 determines also the width of the
fairway: 40m on a river and 35m on a canal, the
minimumradiusofthebends(meanders):500m,and
theminimumdimensionsoflockchambers:length
of
138
72m,widthof9.6m.Theminimumrecommendedair
clearance under bridges at the highest navigable
water level is 4m. This parameter is a significant
confinementintransportation ofcontainers orlarge
sizecargo.
In the following assessment of potentials of
container transportation on the ODW the present
authors assume that ODW conforms to the
requirementsofclassIIIwaterway. That ensures the
operationofshipsatdraughtofatleast1.4mfor90%
of navigation season.Suchconditions prevailed on
thestretchofregulatedOderRiverfromyear1980to
year 2008. In that period the
transit depth of 1.8 m
wasreportedfor27%ofnavigationseason.
Air clearance under bridges is a significant
confinement in transportation of containers. The
limiting bridge on the stretch from Wrocław to
SzczecinistherailwaybridgeinKrosnoOdrzańskie
(at km514.1 of the river) where the
air clearance at
highestnavigablewaterlevelis3.15m. At the mean
navigable water level when ships can operate at
draughtupto1.6m,theclearanceishigherby0.8to
0.9m[6].
OnthestretchofcanalizedOderRiverthelowest
air clearance of 3.37m
is under the road bridge in
Ratowice, over the lock. On this stretch one may
assumethatairclearancesunderbridgesareconstant,
independentfromthelevelofwater.
4 THETECHNOLOGYOFCONTAINER
TRANSPORTATIONONTHEODW
With the confinements in mind, assuming that a
motor cargo vessel will be
the basic unit in
transportationontheODW,thedimensionsofaship
that best utilises conditions on the waterway are as
follows:
lengthoverallLOA=70.0m,
breadthoverallBOA=9.1m,
designdraughtT=1.70m,
draughtoflightshipT0
=0.55m,
heightH=1.80m,
capacity(atT=1.70m)P≈660tonnes,
lengthofholdLh=51.0m,
widthofholdb=7.0m,
estimatedvolumeofballasttanksV=268m3.
Theconceptofsuchvesselwas
presentedinreport
ʺLogistic conditions of combined transportation of
coalinthetransportcorridoroftheOderWaterwayʺ
[5]. Report was written in the framework of RTD
project No. 10000304 financially supported by the
National Centre for Research and Development.
Generalarrangementplanofthatvessel is shown
in
Fig.2. Transverse cross section of vessel, including
dimensionsofballasttanks,isshowninFig.3.Ballast
tanksareintendedforincreasingdraughtinthecases
whenairclearanceunderabridgeisinsufficientand
couldcauseabreakinthevoyage.
Figure2. General arrangement plan of the motor cargo
vesselBMN700
Figure3.Transversecrosssectionofthemotorcargovessel
BMN700
During the development of that concept it was
assumed that vessel is a generalpurpose ship for
transportationofbulkcargoaswellascontainers.In
the case of vessel dedicated for transportation of
containersitispossibletoincreasethewidthofhold
from 7.0m to 7.512m. That
would increase the
number of TEU in one tier from 20 TEU arranged
transversely to 24 TEU arranged longitudinally in
threerows.Netvolumesofballasttanksathold7.0m
wideandathold7.512mwidearegiveninTable2.
Inanalysisofactualdraughtofvessel
thepresent
authors assumed that, in the range of draughts
possible during operation, the draught is a linear
functionofloadingcondition.Basedonthedraughtof
lightshipT
0andthecapacityatdraughtof1.70mone
may estimate that load of 5.74 tonnes increases
draughtby0.01m.
Air clearances required when one or two tiers of
containers are transported are presented in Table3
andinFig.4.
Table2.Volumeofballasttanks
__________________________________________________________________________________________________
TankLength Width Height Volume Correction Corrected Incrementofship
[m] [m] [m] [m3] factorvolume[m3] draught[m]
__________________________________________________________________________________________________
Doublebottom51.0 9.00 0.38 174.4  0.801390.24
Doubleside(hold7.0mwide) 51.0 0.97 1.05 103.4*0.7577*0.13
Doubleside(hold7.512mwide) 51.0 0.70 1.05 75.0* 0.7052*0.09
__________________________________________________________________________________________________
*Volumeofbothtanksatstarboardandportside
139
Table3.Therequiredairclearanceunderbridges
_______________________________________________
MotorcargovesselBMN700
_______________________________________________
DraughtPayload1tier(20TEU)2tiers(40TEU)
[m] [tonnes]Average Required Average Required
gross airgross air
weight clearance weight clearance
ofoneofone
TEUTEU
[tonnes][m] [tonnes][m]
_______________________________________________
0.97 244 12.2 2.00 6.14.60
1.04 280 14.0 1.93 7.04.53
1.11 320 16.0 1.86 8.04.46
1.18 360 18.0 1.79 9.04.39
1.25 400 20.0 1.72 10.0 4.33
1.32 440 22.0 1.65 11.0 4.25
1.39 480‐‐12.0 4.18
1.46 520‐‐13.0 4.12
1.53 560‐‐14.0 4.05
1.60 600‐‐15.0
 3.99
1.66 640‐‐16.0 3.92
_______________________________________________
Ownelaboration
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
0,80,9 1 1,11,21,31,41,51,61,71,8
T[m]
Airclearance[m]
1tierofcontainers 2tiersofcontainers
2tiersandballast airclearanceof3.15m
airclearanceof3.95m
Figure4. The effect of ship draught on required air
clearance
Transportation of 1 tier of containers is possible
regardlessofthegrossweightofoneTEU.Inthecase
of 2 tiers the required air clearance exceeds the
limitingvalueof4mwhengrossweightofoneTEU
isequalorlessthan14tonnes.
Usingballasttanksthedraught
maybeincreased
by 0.37m. Then transport of 2 tiers of containers is
possible at average gross weight of 10 tonnes per
TEU, atship draught of about 1.3m without ballast
and 1.64m with ballast. Without ballasting the
transportof2tiersispossibleonlywhenthe
average
weightofoneTEUequalsatleast16tonnes, at ship
draughtofatleast1.66m.
Air clearance required when the hold is 7.512 m
wideand4additional20feetcontainersareloadedin
a tier is presented in Fig.5. Filling all ballast tanks
increases the draught by
0.33 m. Then two tiers of
containers can be transported at mean weight of 8
tonnesandshipdraughtofabout1.27m.
Ballastingenablesoperationofthevesselcarrying
2tiersofcontainersathighwaterlevels.Itincreases
the utilisation of fleet and the rationalization of
transportcosts.
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
1 1,1 1,2 1,3 1,4 1,5 1,6 1,7
T[m]
Airclereance[m]
1tierofcontainers
2tiersofcontainers
2tiersandballast
airclereaceof3,95m
airclereaceof3,15m
Figure5. The effect of ship draught on required air
clearanceat24TEUinatier
5 COSTSOFWATERBORNEANDRAIL
TRANSPORTATION
The costs of transportation are determined for three
example shipping routes. Distances are given in
Table4.
Table4.Exampleshippingroutesanddistances
_______________________________________________
ShippingrouteDistancebyDistanceby
water[km] rail[km]
_______________________________________________
Gliwice‐Wrocław 200149
Gliwice‐Szczecin 680512
Szczecin‐Wrocław 480363
_______________________________________________
Thedistancebyrailwasdeterminedbasedondatagivenby
PKPCARGO.
Thecostsofrailtransportweredeterminedbased
onthePKPCARGOpricelistbindingsincethe1stof
January2017[13].Costsdependondistance,typeof
container, weight of container, and the state of
containerloading (loaded orempty). The basicrates
are as follows: for routeGliwice‐Wroc
ław
1,913zł/TEU, Gliwice‐Szczecin 5,035zł/TEU,
Szczecin‐Wrocław 3,766zł/TEU. Basic rates were
multiplied by correction factors according to the
following guidelines. For a 20feet container not
heavierthan 22.0 tonnesthe correctionfactor equals
0.75 and 1.00 for a 40feet container. For
empty
containers‐0.5and0.8,respectively.
For estimation of costs of waterborne
transportationthereweredeterminedthedurationof
voyages, the costs of one return voyage, and the
number of voyagesin navigation season. The above
valueswereestimatedbasedondatagivenin[5].The
cost of one tonnekilometre
was estimated on the
assumption that gross weight of a single 20feet
containeramounts12.5tonnes.
The following assumptions were adopted for
determinationofthenumberofvoyages:
totalnumberofnavigabledaysperyear:275,
numberoflockworkinghoursperday:16,
numberof
vesselsthatarelockedatthesametime:
1,
coefficient of the average use of a vessel and of
trafficirregularity:0.85,
marginforthedurationofvoyage:10%.
140
Table5.Durationofavoyage,numberofvoyagespernavigationseasonandcostofvoyageformotorcargovesselBMN700
onindividualstretchesoftheODW
__________________________________________________________________________________________________
StretchofODWDurationofvoyage[h]Numberof Throughput Costof
downstream upstream return [Miotonnes singlereturn
voyages peryear] voyage[zł]
__________________________________________________________________________________________________
GliwiceCanal6.56.53404.15,860
CanalizedstretchoftheOderRiver25.238.3692.820,625
(fromKędzierzynKoźletoBrzegDolny)
ThestchofregulatedOderRiver41.9122.02610.837,720
(fromBrzegDolnytoSzczecin)
__________________________________________________________________________________________________
Table6.UnitcostofwaterborneandrailtransportationonselectedshippingroutesalongtheODW
__________________________________________________________________________________________________
VoyageDurationofvoyage[h]Numberof CostofUnitcost[zł/TEU]
downstreamupstream voyagesper voyageWaterborne Railtransp.
navigation [zł]transp. 20’cont. 40’cont.
season
__________________________________________________________________________________________________
Gliwice‐Wrocław‐Gliwice 28.038.7 6623,2505811,435 1,913
Gliwice‐Szczecin‐Gliwice 73.6166.7  1864,2001,6053,776  5,035
Szczecin‐Wrocław‐Szczecin 45.6128.1 2539,9701,0002,824  3,766
__________________________________________________________________________________________________
The duration of voyage was calculated with
account for actual velocity of stream in considered
stretchofriver.
Theresultsofcalculationsbasedondatagivenin
[5],forindividualstretchesoftheODWarepresented
inTable5.Thecostsofvoyageshavebeenincreased
using the growth factor of
gross domestic product
(GDP),i.e.theratioofGDPinyear2015totheGDPin
year2011[7]thatamounts1.125.
ThroughputgiveninTable5wasestimatedonthe
assumptionthattheratedcapacityofBMN700is650
tonnesandthattrafficisundisturbed. Thenumberof
voyagesisdefinedasthenumberofvoyagesmadeby
asinglevesselduringthenavigationseason.
Using data of Table 5 the duration of single
voyage,thenumberofreturnvoyagesperyear, and
the costs of return voyage were determined for
selectedroutesalongtheODW(Table6).Unit
costof
transportation by water (zł/TEU) was estimated on
the simplifying assumptions that two tiers of
containers(40TEU)arecarriedonlyinonedirection
(upstreamordownstream),andthatthecostsoffuel
anddurationofvoyagearethesameforloadedand
unloaded vessel. When containers are
transported
bothupstreamanddownstreamduringsinglereturn
voyagetheunitcostishalfashighasthatpresented
inTable6.
Unit costs of rail transportation include the
correctionfactorsappliedtobasicrates,asdescribed
before.
The costs of waterborne transportation per one
tonnekilometre when two tiers of
containers are
carried only upstream or downstream, calculated
using data of Table 6 for the considered voyages
amount:
Gliwice‐Wrocław‐Gliwice:0.1162zł/tkm,
Gliwice‐Szczecin‐Gliwice:0.0944zł/tkm,
Szczecin‐Wrocław‐Szczecin 0.0832zł/tkm.
Whencontainersaretransportedinbothdirections
(upstream and
downstream) during one return
voyage the unit cost of one tonnekilometre is
reducedbyhalf.
Additionally, estimated were the costs of
transportation by rail using a train of 40 platform
carriages of kind S and type Sgs. One platform
carriagecancarrythree20feetcontainersorone40
feet
container.Itmeansthatentiretraincancarry120
20feet containers or 40 40feet containers. It was
assumedthathalfoftotalnumberofcontainersona
train are empty. The costs of transportation of one
TEUbyrailonselectedroutesaregiveninTable7.
The
externalcostsweredeterminedbasedondata
on transportation in EU published in [9]. Exchange
rate of 4.2 zł/euro was used for conversion. The
external costs per one tonnekilometre are:
0.047zł/tkm for rail transportation and 0.015 zł/tkm
forwaterbornetransportation.
Data presented in Tables 6 and
7 show that
waterborne transportation is cheaper than rail
transportationevenwhenonlyonetier ofcontainers
iscarriedbyvessel.
Table7. Costs of container transportation on selected
shippingroutes
_______________________________________________
ShippingrouteCosts[zł/TEU]
byrailbywater
20’40’ External 20’  External
cont.cont. costs cont.costs
_______________________________________________
Gliwice‐Wrocław 1,1941,7225358138
Gliwice‐Szczecin 3,1474,532180 1,605128
Szczecin‐Wrocław2,3543,390128 1,00090
_______________________________________________
According to German data, assuming the above
rate of exchange, the estimated mean costs are 630
zł/TEU (150 €/TEU) for waterborne transportation,
andat903zł/TEU(215€/TEU)forrailtransportation
[9].
6 CONCLUSIONS
The presented analysis shows that, in the transport
corridor of the Oder River, the costs
of container
transportation by water are lower than the costs of
transportation by rail. The application of ballasting
enables the transportation of 2 tiers of containers in
141
operating conditions assured on the class III
waterway.Itispossibledespitelowaverageweightof
loadedcontainers,whenthemeanweightofcargoin
a single 20feet container is less than 10 tonnes.
Hence, for most of the lifetime the capacity and the
highestavailabledraught (design draught)
of aship
will not be utilised. It creates the opportunity for
transportationofcontainersalsoatlowwaterlevelsin
the Oder Waterway. To this end it is necessary to
build a fleet of innovative vessels capable of
ballasting (changing draught) when the ship is
sailing.
REFERENCES
[1]Bogucki J., Lewandowski K., Kolanek Cz. et al.:
Śródlądowy terminal kontenerowy. Uzasadnienie
celowości budowy, Instytut Konstrukcji i Eksploatacji
Maszyn Politechniki Wrocławskiej, Raport Nr SPR
94/2009
[2]Frühjahrssitzung2016.AngenommeneBeschlüsse(2016
I), ZKR Zentralkommissionfür Rheinschifffahrt,
Strassburg,Juni2016,www.ccrzkr.org
[3]Market Insight, Europaische Binnenschifffahrt,
Herbst
2016, Zentralkommission für Rheinschifffahrt,
Europaische Kommission, Rotterdam 2016, www.ccr
zkr.org
[4]KreftA.:Programrozwojupolskichśródlądowychdróg
wodnych‐wersjawstępna,KonferencjawMinisterstwie
GospodarkiMorskiejiŻeglugiŚródlądowej,09022016
[5]Kulczyk J., Lisiewicz T., Nowakowski T. et al.:
Logistyczne uwarunkowania transportułamanego
węgla
w korytarzu transportowym Odrzańskiej Drogi
Wodnej, Instytut Konstrukcji i Eksploatacji Maszyn
PolitechnikiWrocławskiej,RaportNrSPR45/2011
[6]Kulczyk J., Skupień E.: Uwarunkowania transportu
kontenerówna Odrze, Zeszyty NaukoweTransport,Z.
73,PolitechnikaWarszawska,2010,pp.61‐77
[7]Rocznik Statystyczny Rzeczypospolitej Polskiej 2015,
GUS,Warszawa,2016
[8]
Teuber M.O., Wedemeier J. et al.: Przewozy towarów
między portem w Hamburgu i Polską perspektywy
rozwoju Unii IzbŁaby i Odry, Hamburgisches
Weltwirtschaftsinstitut(HWWI),2015
[9]VerkehrswirtschaftlicherundökologischerVergleichder
Verkehrstrager Strasse, Bahn und Wasserstrasse,
PLANCO Consulting GmbH, Essen, November 2007,
http://www.planco.de
[10]Wójcicki J.: Studium przystosowania rzeki
Odry do
europejskiego systemu dróg wodnych, Konferencja
naukowotechniczna: Szanse rozwoju dróg wodnych i
żeglugiśródlądowejnatlepolitykitransportowej,SIiTK,
KomitetTransportuPAN,Przełazy,1995
[11]www.pccintermodal.pl
[12]www.portszczecin.pl
[13]www.pkpcargo.com