
659
for the transport of load from the seabed to the
surface, we must clearly align the method based on
which will base the comparison. Assume that the
reference is the minimum energy E
o necessary for a
considered object to remain at rest v = 0, that is, a
steadystateandprovidingahigherenergyE
o=E+dE
allowedto startthe processof itsascent. Inthe first
considered case for v = 0, we obtain, in accordance
withequation(10),E
1=Ep=Eo.
Inthe lattercase ofconverting theequations (24)
weobtain:
22
2
22
11
11
22
po
xx
RH RH
EE E
CR CR
rr
(39)
InthisequationC
xisunknown,theva lueofwhich
in a general way, we are not able to determine
without knowing the geometry of the load being
transported by pipeline of R radius. Assumption
adoptedearliertoreplacethisloadwithasphereisof
coursecorrectwhenitcomestosucha
sizeasV,rand
.ItdoesnotconcernCxparameter.
Aroughvalueofthisparametercanbeestimated
asC
x<1.TheratioR/rcanbereplacedbythevalueof
volume concentration C
v (Sobota 2005) which has a
valuewithinarangeoffrom0.1to0.16.LinearDrag
coefficient falls between 0.0076 to 0.0101 (Sobota
2005).Rvalue,however,isgenerallylessthan1[m].
Fromtheseconsiderationsemergesapictureofavery
energy‐intensive methods of transporting excavated
material
fromtheseabedtothesurface.
Morepreferred approachis tousethemethodof
controlledpyrotechnicreactionasasourceofenergy
in transport from the seabed. In the case, when the
workingfluidisnitrogenratioofE
3toEoisshownin
Figure5,whichshowsthatthisratiodoesnotexceed
2.4.Thismethod, however,is moreenergy‐intensive
thanthemethodanalyzedasfirst.However,thereis
one very positive aspect of this method. In the first
method, there is an additional demand for energy,
which is
directly proportional to the square of the
speedofascentobjectonthesurface.Inthecaseofthe
thirdmethod,onceinitiated,the processof ascentis
theoreticallyself‐supported.Additionally,itgenerates
excessenergythatcanbeexploited.
InFigure6andtheequation(31,32)itisevident
thattheapplicationofcontrolledpyrotechnicreaction
asasourceofenergyfortransportfromtheseabedis
muchmoreadvantageousinthecaseofusingaserial
connection than the conveying elements for the
transportofasingleload.
ACKNOWLEDGMENTS
This article was written within Statutes Research
AGH,No.
11.11.100.005
REFERENCES
Abramowski, T. & Kotliński, R. 2011. Współczesne
wyzwania eksploatacji oceanicznych kopalin
polimetalicznych. Górnictwo i geoinżynieria. Rok 35,
zeszyt5,pp.41‐61.
Depowski, S. & Kotliński, R. & Rühle, E. & Szamałek, K.
1998. Surowce mineralne mórz i oceanów,
WydawnictwoNaukoweScholar,Warszawa
Duckworth, R.A. 1977. Mechanics
of Fluids. London:
LongmanGroupLimited
Feynman, R.P. & Leighton, R.B. & Sands, M. 1977. The
FeynmanLecturesonPhysics,vol.1.AddisonWesley
Filipek,W.&Broda,K.2016.Theoreticalfoundationofthe
implementationofcontrolledpyrotechnicalreactionsas
an energy source for transportation from the sea bed.
Scientific Journals
of the Maritime University of
Szczecin48(120):117‐124
Filipek, W.& Broda, K.2017. Experimental verificationof
theconceptoftheuseofcontrolledpyrotechnicreaction
asasourceofenergyasapartofthetransportsystem
fromtheseabed.Inpress
Halliday,D.&Resnick,R.1978.
Physics,PartI.NewYork:
JohnWiley&Sons,Inc.
http://www.nautilusminerals.com[12March2016]
http://www.peacesoftware.de/einigewerte/einigewerte_e.ht
ml
Karlic,S. 1984. Zarysgórnictwamorskiego, Wydawnictwo
„Śląsk”,Katowice
Roberson, J.A. & Crowe, C.T. 1995. Engineering Fluid
Mechanics.JohnWiley&Sons,Inc.
Sobota, J. et. al. 2005. Systemy i technologie wydobycia
konkrecji zdna oceanów.Zeszyty NaukoweAkademii
RolniczejweWrocławiunr521,MonografieXLIII,Seria:
Współczesneproblemyinżynieriiśrodowiska. Wrocław
SPC,2013DeepSeaMinerals:Sea‐FloorMassiveSulphides,
a physical, biological, environmental, and technical
review. Baker, E., and Beaudoin, Y. (Eds.) Vol. 1A,
Secretariatofthe
PacificCommunity,ISBN978‐82‐7701‐
119‐6, Available from:
http://gsd.spc.int/dsm/public/files/meetings/
TrainingWorkshop4/UNEP_vol1A.pdf[12July2015]
Tuliszka, E. 1980. Mechanika płynów. Warszawa:
PaństwoweWydawnictwoNaukowe