643
Table1.TheresultsoftheanalysisofthepossibilitytoestimatetheINSaccuracyvaluesaccordingto theNPdeviations
fromthemeanvalues,nominalunits
__________________________________________________________________________________________________
Date ValueLatitudeLongitude
Error Deviation Compar.Error Deviation Compar.
__________________________________________________________________________________________________
25.10 RMSE,n.u. 0,08 0,06 1,32+ 0,17 0,12 1,42+
Kurtosis 2,92,6<1,63,1>
26.10 RMSE,n.u. 0,21 0,16 1,31+ 0,25 0,18 1,39+
Kurtosis‐0,5 0>‐0,7 0,7>
27.10 RMSE,n.u. 0,03 0,02 1,5‐ 0,08 0,09 0,89‐
Kurtosis‐0,9 ‐1,3 <‐
0,4 0,5>
28.10 RMSE,n.u. 0,06 0,05 1,2+ 0,26 0,17 1,53+
Kurtosis 0,71,5>‐0,1 ‐0,4 <
29.10 RMSE,n.u. 0,10 0,08 1,3+ 0,14 0,12 1,17+
Kurtosis‐1,0 ‐1,0 =11,5 3,5<(В)
30.10 RMSE,n.u. 0,15 0,11 1,36‐ 0,26 0,18 1,44
+
Kurtosis‐1,4 ‐1,6 <‐0,1 0,7>
31.10 RMSE,n.u. 0,14 0,11 1,27+ 0,26 0,09 2,89‐
Kurtosis‐1,5 ‐1,5 =‐0,1 ‐0,7 <
01.11 RMSE,n.u. 0,09 0,07 1,29+ 0,30 0,17 1,76‐
Kurtosis 0,20,4>1,0‐0,4 <
__________________________________________________________________________________________________
Weightedaveragevalue 0,124 0,096 K*=1,29 0,226 0,151 k*=1,49
__________________________________________________________________________________________________
The analysis data of the validity checking of the
method is based on the definition of limiting error
y^(P)ofNPinform[2]
y^(P)=K
P1E(P)Khm(Р)my=K^my (8)
where
K
P1E(P)–isthecoefficientofconversionfromtheRMS
tothelimitingerror,whichdependsonthespecified
probabilityPanderrordistributionlaw,determined
bytheupperconfidenceboundaryforthekurtosisE;
K
hm(Р)‐istheCoefficientoftheupperconfidencelimit
forRMS;
m
y–isthevalueofRMSvalueofуerror.
Note: The traditional definition of the limiting
error in the form of y^(P)=KP1(P)my, has two
disadvantages. It contemplates that the errors of all
Navigational Parameters are subjected to Gaussian
LawandRMSispreciselyknownandisnotrandom
variable.Thesehypothesesleadtomisidentificationof
the limiting errors. This attitude was proved 20 or
more years ago, before the well‐known Methodic
appeared[5].
In
thecolumn“comparison”ofTable1isgiventhe
following:
The values of the ratio k*=m
y/mu were obtained
experimentally;
Symbols «+» or «‐» mean, for latitude channel
k*
k=1,32 and for longitude channel k*
k’=1,5
andasaresultofcalculationsthelimitingerrorof
theNPwillnotbegreaterthanthepropervalue,
orviceversa;
Symbols «>», «<», «=», mean that the resulting
ratioofkurtosisoferrorsanddeviationswilllead
to the fact that the limit error of
the NP will be
greaterthanthepropervalue,orless,orequalthe
proper value. When there is a signʺ<ʺ kurtosis
Е
dev.<Еer.coefficient of limiting conversion
K^
dev.<K^er., and limiting error in the calculations
based on the deviations will be determined with
discrepancy.
Analyzing the values given in the Table we can
cometotheconclusion:
Thecoefficientsk*relatedto theweightedmean
values of the RMS m * (of errors)andm * (of
deviations),
havethefollowingvalues:
k*
lat=1,29<k=1.32;k*long=1,49>k=1,32 (9)
For the latitude channel, it is justified to use the
theoreticalcoefficientk=1.32indeterminingtheRMS
bydeviation.Forthelongitudechannel,theuseofthe
factork=1.32canleadtoseriouserrorsincalculation
oflimitingerrors.Theupperconfidenceboundfor
the
RMSratioisassignedbyFisherdistribution.
The Fisher coefficient К
FD for the confidence
probability Pdv = 0.99, of the INS error correlation
interval
К=4... 6 h and the equivalent digits of
independentmeasurementsN=40equalsК
ФЛ=1.69.
In this case, the upper confidence bound for the
coefficient k equals k
h=kКФД=2,23>k*Д=1,49. Thus, the
empiricalvaluek*=1,49canbetakentocomputefrom
theformula(5,b)insteadofthecoefficient1.32.
So, the calculating formulas for the RMS of the
INSnavigationparametersjarethefollowing:
1 Inlatitudem
j=1,32muj,inlongitudeandthecourse
m
j=1,49muj.
2 ThelimitingerroroftheNPmaybefewerthanit
should be, due to out‐of‐true estimation of the
kurtosis, in 44% of cases in the latitude channel
and in 50% in the longitude channel. The
maximum understatement of the limiting error
maybe1%inthe
latitudechanneland48%inthe
longitude channel. The probability of such a
significantunderstatementequals1/16=0.06.
These results point us towards the following
conclusion:
IntheprocessofIntNSoperationitisadvisableto
monitor systematically the RMS values of
coordinates and the courseusing the
deviationsoftheNPfromtheaverageva luesand
comparethemwiththepriorivaluesoftheRMS.
Asaresult,thelargervalue becomesanewpriori
one.IntheabsenceofapriorivaluesoftheRMS,
theirdefinitionbydeviationbecomesmandatory.