450
3 FURTHERNUMERICALEXAMPLES
The study analysed in addition the impact of the
lengthofthelonglowerholdLLHonthesubdivision
indexanddecreasedheightofthedoublebottom.In
examples1a)to5a)computationswereperformedfor
alonglowerholdLLHlengthenedby4.2mtowards
the stern of the generic ship with the closing stern
framemovedfrom39.2mto35.0m.
In examples 1b) to 5b) the double bottom was
lowered from 2.40 m to 1.40 m, and the buoyancy
pontoonheightraisedfrom1.60mto2.00.
Therelationsbetweenparametersin
examples1‐5
weremaintained.However,thesubdivisionindexfor
theexpandedlonglowerholdLLHwassignificantly
lowercomparedtothegenericship.Loweringofthe
doublebottom,inpractice,hadnosignificantimpact.
Thetablesbelowpresenttheindicesofsubdivision
forparticulardesigncases.
Table1.Subdivisionindexforgenericshipparameters.
_______________________________________________
Nr ParameterA
_______________________________________________
1 Generic0.73015
2 Example1,pluspontoon1.6m0.74574
3 Asin2,pluswingtanksoncardeck0.1B 0.83356
4 Asin3,plusdeckraisedby0.2mto8.1m, 0.86729
pontoonheight1.8m
5 Asin3,plus1msheerofcar
deck0.87804
_______________________________________________
Table2.Subdivisionindexfororiginalshipparameterswith
lengthenedLLH.
_______________________________________________
Nr ParameterA
_______________________________________________
1a Genericship0.68307
2a Asin1a,pluspontoon1.6m0.69210
3a Asin2a,pluswingtanksoncardeck0.1B 0.79705
4a Asin3a.,plusdeckraisedby0.2mto8.1m,0.81254
pontoonheight1.8m,
5a Asin3a,sheerofcardeck
1m0.80055
_______________________________________________
Table3.Subdivisionindexfororiginalshipparameterswith
lowereddoublebottom.
_______________________________________________
Nr ParameterA
_______________________________________________
1b Genericship0.72476
2b Asin1b,pluspontoon2.0m0.73277
3b Asin2b,pluswingtanksoncardeck0.1B, 0.83243
4b Asin3b,plusdeckraisedby0.2mto8.1m,0.86086
pontoonheight2.0m
5b Asin3b,sheerofcardeck
1m0.87620
_______________________________________________
4 CONCLUSIONS
Theanalysisoftheindicesofsubdivisionforvarious
configurationsofthegeneralarrangementshowsthe
followingconclusions:
1 The long lower hold LLH under the car deck
contributes positively to the attained subdivision
indexA.Nevertheless,inthecaseofhulldamage,
symmetrical flooding achieved by cross
‐flooding
ofthe opposite sidetanks is recommended along
with an effective air venting system to eliminate
potentialaircushions;
2 An additional buoyancy pontoon under the car
deck slightly increases survivability measured by
thesubdivisionindex;
3 Side tanks of the width b = 0.1B significantly
increasethe subdivision
indexanddoesnotlimit
operationalcapacity of the ferry – space between
deckgirdersandsideframesisanywayuselessfor
thecarriageofro‐rocargo;
4 Another option for increasing the subdivision
indexistoraisetheheightthecardeck.However
suchasolutionisnotalways
feasible;
5 Sheerofaftandforecardeckenhancessafety,but
notasmuchasexpected;
6 ThelengthofthelonglowerholdLLHshouldbe
carefullysetasexcessiveextensioncouldleadtoa
considerabledropofthesubdivisionindex;
7 Theimpactofdoublebottomon
subdivisionindex
is negligible, supported also by work of Sonne
Ravn(2003).
REFERENCES
International Maritime Organisation. 1974. Regulations on
subdivision and stability of passenger ships (as an
equivalent to part B of chapter II of the 1960 SOLAS
Convention).London.
International Maritime Organisation. 2009. SOLAS
Convention,ConsolidatedEdition2009.London.
Pawłowski, M. 1999. Marine Technology, Vol. 36, No. 4,
Subdivisionof RO/ROships
forenhancedsafetyinthe
damagedcondition:194–202.
PawłowskiM.&LaskowskiA.2014.TransRINA,Vol.156,
Part A2, Intl J Maritime Eng, Effect of watertight
subdivisionondamagestabilityofro‐roferries:131–136.
RINA.2001,BestShipsof2001:46‐47.
ROROPROB.2000–2003.EUResearchProject,
FP5,DGXII‐
BRITE,Probabilisticrules‐basedoptimaldesignofro‐ro
passengerships.
Sonne Ravn, E. 2003. PHD Thesis, Probabilistic damage
stabilityofro‐roship.