163
Theresultsofexperimentsconfirmedthatthelevel
ofpropensityPKStoself‐heatingstronglydependson
the degree of purity of tested materials. The high
content of oil as a contaminant (10 %) accelerates
exothermicreactionwhich may causeself‐heating of
material.WhenoilcontentinPKSwas
approximately
15%,thetemperaturegrewrapidly andhasinitiated
theself‐heatingprocess.
4 CONCLUSION
The maritime transport continues to evolve, new
products and new methods introduce new and less
wellunderstoodhazards.Itisrecognizedthatrisks
associatedwiththisgrowthinthe transportofthese
raw materials depend
on two major parameters:
temperatureandtheirmoisturesensitivity.
Self‐heating of biomass is a serious problem and
hasbeenacauseofseveralincidents.
OilpalmbiomasssuchasPalmKernelShellcanbe
used to produce steam for processing activities and
for generating electricity. It is important to
characterize
the risk of self‐heating and self‐ignition
ofthesecargoesbeforeloadingthemonship.
The results of investigation provide information
importantforpreventingtheself‐heatinginthePKS.
The data presented in the paper could be useful in
estimationofthethermalstabilityduringstorageand
transportation
of these cargoes. It should be
recommendedtoavoidstorageandseatransportation
of large volumes of PKS if its tendency for self –
heatingisunknown.
TheIMSBCodeneedcontinual upgradingbecause
crewsandshippingagency needmoreinformationon
thebehaviorofthenewproductsandtheir carriage
in
newways.
Factors, such as cargo volume, the level of
compactionofthetransportedcargoandexternalheat
source should be taken into account when
determiningtheriskofself‐heating.
REFERENCES
Alengaram, U.J. Mahmud, H. Jumaat M.Z. Shirazi, S.M.
2010.Effectofaggregatesizeandproportiononstrength
properties of palm kernel shell concrete. Int J Phys Sci
5(12):1848‐1856.
Alengaram, U.J. Mahmud, H. Jumaat M.Z. 2010.
Comparison of mechanical and bond properties of oil
palmkernelconcretewithnormalweight
conctere.Int
JPhysSci5(8):1231‐1239.
Alengaram, U.J. Al Muhit, B.A. Jumaat, M. Z. 2013.
Utilization of oil palm kernel shell as lightweight
aggregate in concrete – A review. Construction and
BuildingMaterials38:161‐172.
Dhillon, R.S. von Wuehlisch, G. 2013. Mitigation of global
warming through renewable
biomass. Biomass and
Bioenergy48:75‐89.
Ekong,C.E.2013.Determinationofwaterabsorptionrateof
palm kernel shells as an alternative pore agents in
insulating refractory bricks. Journal of African studies
2:34‐39.
He, M. Hu, Z. Hiao, B. Li, J. Gou, H. Luo, S. 2009.
Hydrogen‐reachgasfrom
catalyticsteamgasificationof
municipal solid waste: Influence of catalyst and
temperature on yield and product composition.
InternationalJournalofHydrogenEnergy34:195‐203.
Hosseini,S.E.Wahid, A.W.Aghili,N.2013.Thescenarioof
greenhouses reduction in Malaysia. Renewable
SustainableEnergyRev28:400‐409.
IMO.2015.InternationalMaritime Solid
BulkCargoesCode.
London.
Jones,J.C.2001. Onthe extrapolation of results from oven
heating tests for propensity to self‐heating. Combust.
Flame.124:334‐336.
Kashim, J.B. 1999. Manufacturing of efficient kilns from
locallyderivedrefractorymaterialsinNigeria.Journalof
IndustrialDesighn&Technology1(1):64‐70
Krause, U. &
Schmidt, M. 2001. The influence of initial
conditions on the propagation of smoldering fires in
dust accumulation.J. Loss Prevention Process 14: 527‐
532.
Kelman,J.B.2008.Hazardinthemaritimetransportofbulk
materials and containerized products. IChemE.
Symposiumseries1541‐15.London.
Lasek, J.A. Kopczyński, M. Janusz,
M. Iluk, A. Zuwała, J.
2017. Combustion properties of torrefied biomass
obtained from flue gas‐enhanced reactor. Energy 119:
362‐368.
Mannan, M.A. Aleksander, J. Ganapathy, C. Teo, D. 2006.
Qualityimprovement of oil palm shell (OPS) as coarse
aggregate in lightweight concrete. Build. Environ. 41(9):
1239‐1242.
Mannan,
M.A.Ganapathy, C.2002.Engineeringproperties
of concrete with oil palm shell as coarse aggregate.
ConstrBuildMater16(1):29‐34.
Moghadam, R.A. Yusup, S. Lam, H.L. Al. Ahoaibi, A.
Murni,M.2013.Hydrogenproductionfrommixtureof
biomass and polyethylene waste in fluidized bed
catalytic steam co‐gasification process.
Chemical
EngineeringTransactions35:565‐570.
Ninduangdee, P. Kuprianon, V.I. Cha, E.F. Kaevrath R.
Youngyuen, P. Atthawethworawuth, W. 2015.
Thermogravimetric studies of oil palm empty fruit
bunch and palm kernel shell: TG/DTG analysis and
Modelling.EnergyProcedia79:453‐458.
Olanipekun, E. Olusala, K. Ata, O. 2006. A comparative
study
on concrete properties using coconut shell and
palm kernel shell as coarse aggregates. Build Environ.
41(3):297‐210.
Olivier,JosG.J.Greet,J.M.Jeroen,P.A.H.W.2012.Trendsin
global CO
2 emission. PBL Netherlands Environmental
AssessmentAgency.
Pinto, F. Andrea, R. N. Franco, C. Lopes, H. Gulyurtlu, I.
Cabrita,I.2009.Co‐gasificationofcoal andwastesina
pilot‐scale installation 1: Effect of catalysts in syngas
treatmenttoachievetarabatement.Fuel88:2392‐2402.
World Growth. 2011. The
economic benefit of palm oil to
Indonesia.AReportbyWorldGrowth.Arlington.Virginia.
Prastowo, B. 2012. Biomass resource in Indonesia:
Indonesia’ssolidbiomass energy potential. In: German‐
Indonesia Workshop on Biomass. Institute Technology
Bandung.Bandung.
Rsmirez,A.Garcia‐Torrent,J.Tascon,A.2010.Experimental
determination of eslf‐heatin
and self‐ignition risks
associated with the dust of agricultural materials
commonly stored in silos. Journal of hazardous material s
175:920‐927.
Sturaro,A.Rella,R.Perwoli,G.Ferrara,D.Doretti, R.2003.
Chemical evidence and risks associated with soybean
and rapeseed meal fermentation. Chemosphere 52(7):
1259‐1262.
UN. (2009), Recommendations on
the Transport of
DangerousGoods:ManualTestsandCriteria,NewYork,
Geneva