104
where:
x–shipsizefactor(tobecalculated,seeTable4),
m
2,n2–functioncoefficients.
Thecoefficients(with95%confidencebounds):
m
2=‐0.235(‐0.345,‐0.125),
n
2=3.22(2.982,3.458).
Thegoodnessoffit:
SSE:0.00015
R‐square:0.9986
adjustedR‐square:0.9973
RMSE:0.01225.
Table4.Shipsizefactor“x”forequation(8)and(9).
_______________________________________________
shipsize
verysmall small medium large verylarge
_______________________________________________
length[m] 60,0 95.0 173.5 261.3 294.0
factor(x) 0.51 23 3.5
_______________________________________________
Thevaluesfor“verysmall”and“verylarge” ship
are suggested only‐for extrapolation‐and to be
verified in the future research, as preliminary
research has been conducted only for such size of
ships. Intermediate values from 1 to 3 are to be
interpolatedforaspecificshiplength.
Inconclusion,thelengthofellipticaldomainsemi‐
axesintheopenseaareacanbepresentedas(10,11):
01
afxa (10)
02
bfxb (10)
where:
a
o – length of semi‐major axis of elliptic domain in
openseaarea,
a
‐ length of semi‐major axis of elliptic domain in
restrictedarea,asdescribedinequation(3),
b
o – length of semi‐minor axis of elliptic domain in
openseaarea,
b
‐ length of semi‐minor axis of elliptic domain in
restrictedarea,asdescribedinequation(4),
f
1(x),f2(x)‐functionvaluedescribedabove.
Thesearealternativeformsoftheaboveequations:
0
0.19 0.34axa (12)
0
0.235 3.22bxb (13)
4 CONCLUSIONS
Ithasbeenobservedthat,generally,thedomainsize
changes distinctly depending on available
maneuverable area dimensions. The simulation
researchprovesthatnavigatorsmaneuveringinopen
seaareastendtokeepalargerdomaincomparingto
restrictedarea.
In particular, the following changes have been
observedfor
navigationintheopensea:
1 increaseinlengthofsemi‐majoraxis;
2 increaseinlengthofsemi‐minoraxis;
3 increaseinthesizeofthedomainarea;
4 changeddisplacement ofellipse centre (x0,y0) is
proportional to length increase of the relevant
semi‐axis.
Another important observation
is that the
proportionsofdomainaxeschanges‐domainsinthe
open sea are relatively wider and more oval than
thoserelativelysliminrestrictedareas.
Regularityisobservedintheincreaseofsemi‐axis
lengthinrelationtoshipsize.Itispossibletodescribe
itbyequations(10
and11or12and13).
Isseemspurposefultoverifytheresultswithreal
datafromAISbasedresearchasproposedbyHansen
etal.(2013)forarestrictedarea.
This research outcome has been achieved under
theresearchprojectNo1/S/ITM/2016financedfroma
subsidy of the Ministry of
Science and Higher
Educationforstatutoryactivities.
REFERENCES
Fuji, Y. & Tanaka, K. 1971. Traffic capacity. Journal of
Navigation,no.24.Cambridge
Goodwin, E. M. 1975. A statistical study of ship domain.
JournalofNavigation,no.28.Cambridge
Hansen,M.&Jensen,T.&Lehn‐Schiøler,T.&Melchild,K.
&Rassmussen,F.&Ennemark,F.(2013)EmpiricalShip
Domain
BasedonAISData.JournalofNavigation,no66.
Cambridge.
Pietrzykowski Z. & Uriasz, J. 2009. The ship domain – a
criterion of navigational safety assessment in an open
seaarea,JournalofNavigation,no.62.Cambridge.
Śmierzchalski, R. & Weintrit A. 1999. Domeny obiektów
nawigacyjnych jako pomoc w
planowaniu trajektorii
statku w sytuacji kolizyjnej na morzu (in Polish).
ProceedingsofIIINavigationalSymposium,Gdynia
Wielgosz, M. 2015. Ship domain in navigational safety
assessment. Unpublished PhD Thesis (in Polish).
MaritimeUniversityofSzczecin.
Wielgosz, M. 2016. The ship safety zones in vessel traffic
monitoringandmanagementsystems.ScientificJournals,
Maritime
UniversityofSzczecin,No.48(120)/2016:153‐158.
Wielgosz, M., Pietrzykowski, Z. 2012. Ship domain in the
restrictedarea–analysisoftheinfluenceofshipspeed
ontheshapeandsizeofthedomain,ScientificJournals,
MaritimeUniversityofSzczecin,no.30(102)/2012.