400
The results of the study revealed a considerable
impactonmaritimenavigationand the applications
in maritime segment. A space weather event
developmentmaycauseconsiderabledegradationof
GNSS positioning performance, but situation may
become worsened due to a more complicated
positioning error dynamics resulting from storm
development. Such effects
may affect not only the
traditionalGNSS‐basedmaritimenavigationservices
and applications, but also the emerging ones,
including: autonomous surface and underwater
vessels, automated search & rescue operations and
various robotic applications. The above‐stated
findings of this study aimed to contribute to
development of more robust and resilient
GNSS
developmentrelatedtomaritimesegment.
6 CONCLUSIONANDFUTURERESEARCH
Studies of GNSS operation and positioning
performance in situations and events of potential
GNSS disruptions create a evidence‐based
foundationfortheresilientGNSSdevelopment.Here
wepresenttheresultsofastudyofGNSSpositioning
performanceina transitional
periodofadeveloping
space weather/ionospheric event. The study was
conductedthroughdeploymentofafully‐functional
open‐source software‐defined GNSS radio receiver
RTKLIB, fed with the experimentally collected the
GPS and GLONASS pseudoranges collected
experimentallyattheIGSreferencestationinPadua,
ItalyduringaG4‐gradespace
weatherevent(storm)
in2015.
Thestudyrevealedpotentialsformitigationofthe
effects of developing space weather processes on
GNSSpositioningperformance,including:
smoothing the positioning error dynamics and
confinement of positioning error samples
dispersion through utilisation of multi‐GNSS
systems (the utilisation of satellite signals
belonging to different
satellite navigation
systems),
reductionofdailymeanpositioningerrorthrough
utilisation of the ionospheric delay correction
models,
non‐Gaussian statistical distributions of daily
positioningerrorsatthetimesofspaceweather
disturbances development, which suggests
developmentofcorrectionmodelsthatrespectthe
characterofthecausesofpositioning
errors,and
utilisation of dual‐frequency positioning error
estimates as the reference in GNSS positioning
performanceassessment.
This study addressed the case of utilisation of
GPSandGLONASS,thetwofully‐operationalglobal
navigationsatellitesystems.Futureresearchwilltake
into account effects and benefits brought by
emerging (BeiDou and
Galileo) and augmentation
(EGNOS)systems.
REFERENCE
Booker, H. G. (1954). Morphology of Ionospheric Storms.
ProcNAS,40,pp931–943.
Cannon,P etal.(2013).Extremespaceweather:impactson
engineeredsystemsandinfrastructure.RoyalAcademy
of Engineering. London, UK. Available at:
http://bit.ly/11OdBNN,accessedon10February,2016.
Davis,K. (1990).Ionospheric Radio.PeterPeregrinus Ltd.
London,
UK.
Filjar, R and Huljenić, D. (2012). The importance of
mitigation of GNSS vulnerabilities and risks.
Coordinates,8,14‐16.Availableat:http://bit.ly/Mv4QSc
,accessedon19August,2016.
Filjar,R.(2011).GNSS:Whatcangowrong,andwhatare
the risks? Risk Management in GNSS Malfunctioning
Conference.InternationalInstitute
fortheUnificationof
Private Law (UNIDROIT). Rome, Italy. Available at:
http://bit.ly/2aFS1St,accessedon19August,2016.
Hapgood, M. (2010). Lloydʹs 360º Risk Insight – Space
Weather: Its impact on Earth and implications for
business. Llyodʹs. London, UK. Available at:
http://bit.ly/1dsXhrF.
IGS. (2016). International GNSS Service. Available at:
http://www.igs.org/,accessedon:29September,2016.
Jacobsen,KS,andAndalsvik,YL.(2016).Overviewofthe
2015 St Patrick’s day storm and its consequences for
RTK and PPP positioning in Norway. J Space Weater
SpaceClim,6,A9,12pages. DOI:10.1051/swsc/2016004
Klobuchar,JA.(1987).IonosphericTime‐Delay
Algorithm
forSingle‐FrequencyGPSUsers.IEEETransonAES,3,
325–331.
Mendillo,M.(2006).Stormsintheionosphere:Patternsand
processesfortotalelectroncontent.RevGeophys,44(47
pages).doi:10.1029/2005RG000193
Petrovski, I G, and Tsujii, T. (2012). Digital Satellite
Navigation and Geophysics: A Practical Guide with
GNSS Signal
Simulator and Receiver Laboratory.
CambridgeUniversityPress.Cambridge,UK.
R Development Core Team (2016). R: A language and
environmentforstatisticalcomputing.RFoundationfor
StatisticalComputing,Vienna,Austria.ISBN3‐900051‐07‐0.
Available at: http://www.R‐project.org, accessed on 5
February,2016.
Sanz Subirana, J et al. (2013). GNSS
Data Processing –
Volume I: Fundamentals and Algorithms. ESA.
Noordwijk,TheNetherlands.
SPIDR. (2016). Space Physics Interactive Data Resource
archive. Available at: http://spidr.ionosonde.net/spidr/,
accessedon:29September,2016.
Stewart, R W et al. (2015). Software Defined Radio using
MatLab & Simulink and the RTL‐SDR. University of
Strathclyde. Glasgow, Scotland,
UK. Available at:
http://www.desktopsdr.com,accessedon29September,
2016.
Takasu, T. (2013). RTKLIB: An Open Source Program
Package for GNSS Positioning. Software and
documentation available at: http://www.rtklib.com,
accessedon19August,2016.
Thomas,Metal.(2011).GlobalNavigationSpaceSystems:
reliance and vulnerabilities. Royal Academy of
Engineering. London, UK.
Available at:
http://bit.ly/1vrIenu,accessedon19August,2016.