413
Steeringactionstheazimuthingthrustersandfin
unit requires a two‐dimensional control system
(TITO). The nominal plant and the frequency‐
weightedlinear‐quadraticregulatorLQRareapplied
toreducetherollmotioninirregularwaves.Theroll
motion of ships is effectively reduced when the fin
andpodpropeller
areusedasthecontrolactuatorsat
lowspeeds.
Inregularwavesbyu=7knthefinscompensated
therollingmotionto25%,podpropellersto38%and
boththeyreached52%oftheamplitudeofthenon
stabilizedship
4 SUMMARY
The choice of stabilizer depends on
many ship and
missionconsiderations.Thelargenumberofexisting
stabilizers makes it possible to find a stabilizer for
virtuallyevery conceivablemission, beitlow speed
trawling to high speed pursuit. The question of
whetherornottohaveastabilizerdependsnotupon
the availability of stabilizers, but
rather on whether
ornotaparticularstabilizerwillbeuseful.Thiscan
bedeterminedbyfindingtheincreaseinoperability
relative tosomemotion criterionIt would seem that
inachangingenvironmentinwhichiscarriedoutthe
rollstabilizationfindswideapplicationtheadaptive
control. However, the phenomenon of
resonance
requiresthattheclassiclinearcontrolleraccordingto
Minorsky’stheoryistunedtoafrequencyclosetothe
naturalfrequencyoftheship.
Apotentialresearchactivityhasacontrolsystem
designoffreesurfacetanks,whichcouldrealizethe
adaptationtothechangesintheseaenvironmentbut
theeffectivenessofthesestabilizersindependentlyof
thecontrolisrelativelylow.
ThroughadaptationofPI/PIDcontrollersettingsit
maybepossiblethatthecurrentstabilizingmoment
by this wave frequency counteracts the excitation
moment.
For some vessels of varying over a wide range
dynamic,itmaybedesirabletoadapt
thecontroller
to the new natural frequency of the ship. This
requirestheidentification,whichundertheinfluence
of disturbances can cause significant number of
difficulties.
Researchersintheworksdevotedtothesynthesis
of stochastic stabilization systems despite the
charactersofthedominantdisturbancesrarelycome
across a probabilistic
approach control. It appears
that the use for example of minimum variance
strategy, which the objective is to minimize the
steady‐stateoutputvarianceswouldbejustified.
The adaptive minimum variance control can be
usedinpredictiveformtoo.
To control a ship motion for certain operating
conditions, a particular controller
may yield a most
suitable performance. Therefore, a set of different
types of controllers should be designed depending
onvariousspeeds,environmentalandseaconditions
so that appropriate controllers are selected in
correspondencetotheseconditions.Ifitisdifficultto
obtainsatisfactoryresultsusingonecontroller,itcan
turn
to switched control techniques what is
implemented for instance in some devices of an
integratedfinandrudderrollstabilization
As shown by test results presented in the cited
papersinthecontrolofstabilizerssystemsmayalso
besuccessfullyusedvariousmodel‐basedcontrollers
for instance the model predictive controllers,
fuzzy
logic and artificial neural networks controllers. In
recent years were tested Linear Quadratic Gaussian
(LQG), as well Loop Transfer Recovery (LTR)
procedure.
REFERENCES
Agarwal,A.1997.H∞robustcontroltechnologyappliedto
thedesignofacombinedsteering/stabilizersystemfor
warships.11.ShipControlSystemssymposium:85‐99.
Akaike,H.1994.Statisticalanalysisandcontrolofdynamic
systems.KluwerAcademicPublishers.
Alarçin, F. 2007. Internal model control using neural
network for ship roll
stabilization. Journal of Marine
scienceandTechnology.Vol.15,No.2pp.141‐147.
Alarçin, F. & Gulez K. 2007. Rudder roll stabilization for
fishing vessel using neural network approach. Ocean
Engineering34:1811–1817.
Casado, M.H. & Ferreiro, R. 2005. Identification of the
nonlinearshipmodelparametersbasedontheturning
test trial and
the backstepping procedure. Ocean
Engineering32.:1350‐1369.
Chadwick,J.1955.OnthestabilizationofRoll.SnameTrans.
Vol.63:234‐280.
Cholodin, & A.N.,Shmyrev, A.N. 1972. Morechodnost I
stabilizacjasudovnavolnienii.Sudostrojenie
Cowley,J.B.&LambertT.H.1972.Theuseoftherudderas
rollstabilize.Proceedings of the
3rdShip Control Systems
SymposiumVol.2Bath.
Crossland, P. 2003. The effect of roll‐stabilisation
controllersonwarshipoperationalperformance.Control
EngineeringPractice11:423‐431.
Fang, M.‐C. & Luo, J.‐H. 2006. The application of the
sliding mode controller on the ship roll reduction in
randomwavesusing
geneticalgorithm.Naval Engineer
Journal,USA118(4):37–47.
Fang,M.C.&Luo,J.K.2007.Onthetrackkeepingandroll
reductionofthe shipinrandomwavesusing different
slidingmodecontrollersOceanEngineering34:479–488.
Fang,M.C.&ZhuoY.Z.&LeeZ.Y.2010.Theapplicationof
the
self‐tuning neural network PID controller on the
shiprollreductioninrandomwaves.OceanEngineering
37:529–538.
Frahm,H.1911.Resultsoftrialsofanti‐rollingtanksatsea.
TransactionsoftheInstitutionofNavalArchitects,53:193‐
201
Jin,H. & QiZ. &Zhou T. &
LiD. 2008.Research on roll
stabilization for ships at anchor. Journal Marine Sci.
Applications,7:248‐254.
Klugt, P. G. M. van der. 1987 Rudder roll stabilization..
PhD Thesis. VanRietschoten and Houwens BV,
Rotterdam.
Kula, K. 2014. Cascade control system of fin stabilizers.
19th International Conference on Method and
Models in
Automation and Robotics. Międzyzdroje Publisher IEEE
10.11109/MMAR2014:868‐873.
Law, Y. & Koshkouei A.J. & Burnham K.J. 2005. A
comparision of control systems for ship roll
stabilization.SystemsScienceVol.31,no2:77‐87.
Lee, S. & Rhee K.P. & Choi J.W. 2011. Design of t he roll
stabilization controller, using fin stabilizers and pod
propellersAppliedOceanResearch33:229–239.
Minorski,N.1922.Directionalstabilityofautomaticsteered
bodies.NavalEng.Journal34(2):280–309.