135
1 INTRODUCTION
A ship domain (Coldwell, 1983; Davis 1982) is
generally thought as the space around the ship,
which the navigator wants to keep clear of other
objects(includingships).Shipdomainmodelsarein
abundanceandthenewonesarebeingcontinuously
proposed,eitherbasedontheoreticalanalysesorreal
data (Hansenetal.,2013).Theyareusedinma
rine
trafficengineering,e.g.fordeterminingthecapacity
of traffic lanes and assessing collision risk
(Pietrzykowski,2008;Montewkaetal.,2011;Xianget
al., 2013), as well as in collision avoidance for
determining safe manoeuvres (Śmierzchalski, 2000).
The shape and size of a ship domain is usually
dependent on ship’s lengt
h and speed (Fuji and
Tanaka,1971),thoughparametersofothershipsmay
alsobetakenintoaccount(PietrzykowskiandUriasz,
2009). Ship domains are often given explicitly as
geometrical figures but (especially in case of
restrictedwaters)theymayalsobegivenasfunct
ions
proposedonthebasisofsafetyparametersdefinedin
the ECDIS (Pietrzykowski and Wielgosz, 2011;
Weintrit, 2006; Weintrit, 2009). This paper abstracts
fromthemoregeneraltrafficengineeringissuesand
focusesonthepractical impactofadomain’s shape
on determining course and speed alteration
manoeuvres in encounter situations (Szłap
czyński,
2007).Whilethecollisionavoidancemanoeuvresare
often strongly dependent on the domain’s size (the
larger the domain, the larger the manoeuvres), the
precise impact of its shape has not been researched
before. Various researchers develop their domain
models based on empirical data (distances between
ships for different relative courses and bea
rings),
collision risk assessments, COLREGS and good
marine practice. The differences between the
proposed shapes are sometimes very subtle, hence
the present authors’ idea to check, whether those
small differences actually translate to different
navigational decisions (collision avoidance
manoeuvres)andtowhatextent.Obviously,inma
ny
real situations navigational decisions depend on
reasons other than assumed domain shapes and
sizes.Actualcourse alterations may be much larger
than those determined to avoid a ship domain
A Simulative Comparison of Ship Domains and Their
Polygonal Approximations
R.Szlapczynski
GdanskUniversityofTechnology,Gdansk,Poland
J
.Szlapczynska
GdyniaMaritimeUniversity,Gdynia,Poland
ABSTRACT:Thepaperinvestigatestheimpactofapreciseshipdomainshapeonthesizeofcollisionavoidance
manoeuvres.The considered collision avoidance manoeuvres include both course and speed alterations.
Variousshipdomainsarecomparedwiththeirpolygonalapproximations,whichvaryinthenumberofpoints
ofadomaincontourandplacementofthesepoints. Thebestofallconsideredapproximat
ionsisdeterminedin
thecourseofsimulationexperimentsperformedforheadon,crossingandovertakingsituations.Thechosen
number and placement of contour points combine precision of domain approximation with reasonable
computationaltime.
http://www.transnav.eu
the International Journal
on Marine Navigation
and Safety of Sea Transportation
Volume 9
Number 1
March 2015
DOI:10.12716/1001.09.01.17
136
violation.Insuchcasesshipdomainsarepractically
irrelevantandthereforethesesituations areofnouse
forthisresearchandarenottakenintoaccountinthe
simulation experiments. For the purpose of this
research it is assumed that we are dealing with
isolatedcaseswhencoursealterationmanoeuvres
are
based solely on ship domains and that avoiding
domain violations is both necessary and sufficient
conditionforthealterationtobesafe.
Because of their various sizes, the ship domains
cannot be compared directly with each other.
Thereforeintheexperimentspresentedinthepaper
eachof theconsidered
domainsis comparedwith a
series ofitspolygonal approximations containing 8,
16 or 32 points placed uniformly or nonuniformly
(constant or varying angular distances between
pointslyingonthedomain’sboundary).Thenumber
ofpointsisofkeyimportancebecauseitaffectsboth
theprecision of resultsandthe
computationaltime.
In a decision support system potential domain
violationsareusuallycheckedwithinmultipleloops,
thusbeingthemostfrequentoperationsandlargely
contributing to the overall computational time.
Doubling the number of points in a ship domain
modelpracticallydoublesthecomputationaltimeof
determiningasafetrajectory
oracollisionavoidance
manoeuvre.Therefore, thepaperaimstoinvestigate
the impact of approximation points and their
placementonthesizeofcourseandspeedalterations
performedtoavoidcollisions.
The remaining part of the paper is organized as
follows. In Section 2 all considered domains are
briefly described. The
prepared encounter scenarios
and polygonal approximations of domains are
presented in Section 3 and the results of the
simulationexperiments areshownanddiscussedin
Section 4. Based on these results, a summary and
conclusionsaregiveninSection5.
2 SHIPDOMAINSTAKENINTOACCOUNTIN
THECOMPUTERSIMULATION
EXPERIMENTS
Theshapesusedintheexperimentsarethoseofship
domains according to Fuji (1971), Davis (1982),
Coldwell (1983) and Pietrzykowski (2009). Two
slightlydifferingshapeshavebeenappliedincaseof
Coldwell’s domain (one for headon and crossing
encounters and another one for overtaking) and six
shapesin
caseofPietrzykowski(threededicatedfor
fuzzy domains and three for the crisp ones). The
shapes of ship domains accordingto Fuji, Coldwell
and Davis are commonly known and therefore are
not reproduced here. Examples of more interesting,
irregularshipdomainshapesaccordingto
Pietrzykowski (2009)areshown in Figures
1 and 2.
Thefuzzydomainutilizesanavigationalsafety level
γ. The bipolar grid in all figures features circles,
whoseradiusesare0.5,1,1.5and2nauticalmiles.
Figure1. Fuzzy domain according to Pietrzykowski and
Uriasz withγparameter (navigational safety level) set to
0.5.
Figure2. Fuzzy domain according to Pietrzykowski and
Uriaszdedicatedtoheadonencounters.
3 SIMULATIONEXPERIMENTS(ENCOUNTER
SCENARIOSANDPOLYGONAL
APPROXIMATIONSOFDOMAINS)
Three types of oneonone encounter scenarios are
used throughout the simulation experiments: head
on,crossingandovertaking.Thedifferencesbetween
shipcourses are 180, 90and0degrees respectively,
and the speeds and initial positions are such that
ships
wouldcollide if neither of themmanoeuvred.
The distances between ships vary in the scenarios,
depending on a particular domain, which is used.
Thedistancesaredeliberatelysetinsuchaway,that
the necessary safe course alteration manoeuvre
wouldbebetween15and20degrees and(incaseof
crossing encounters) speed reduction manoeuvres
wouldbeinthesamerange(speedreducedby4to6
knots)forallshipdomains.
Ifweassumethatacoursealterationismadesoas
toavoidviolatingatarget’sdomain,thanclearlyboth
shape and size of domain is of importance. It
is
illustratedinFigures 3 and 4, where courses which
lead to violating ship domains are shown for a
circulardomain(safedistanceoftenusedincollision
avoidance systems) and elliptical domain
respectively. Forbidden (collision) course sectors
varyinbothcasesduetousingdifferentdomains.
137
Figure3.Collisioncoursesectorforagivensafedistance.
Figure4. Collision course sector for a given target’s
domain.
The algorithm for determining the minimal
acceptable course alterations (and consequently‐
collisioncoursesectors)hasbeendescribedindetail
in(Sz łapczyński,2007).Itisbrieflyrecalledherefor
thereadersconvenience.Inthealgorithm(Figure5),
the course alteration is modified iteratively until
target’s domain is not violated (the
approach factor
f
minislargerthan1)andtheaccuracyissufficient(the
error is smaller than given value of the parameter
δѱ).
Figure5.Algorithmdeterminingminimalcoursealteration
foragiveshipdomainbasedonapproachfactorf
min.
For each domain five polygonal approximations
arecompared.Ineachcasetheapproximationisdone
automatically: the coordinates of points on the
originaldomainboundariesaredeterminedfirstand
then are joined by straight segments so as to form
polygons. The approximations vary in the number
pointsandtheirplacement:8
point,16pointand32
pointapproximationsare used.The8point and16
point approximations appear in two variants each:
either uniform angular distances or nonuniform
onesareused.Fortheuniformangulardistancesthe
points on the approximated domain boundary are
placed in either 45 degree intervals
(8point
approximation) or 22.5 degree intervals (16 degree
intervals).Forthenonuniformangulardistances,the
points on the approximated domain boundary are
placedasfollows.For8points:0,30,90,150,180,210,
270and330degrees. For16points:0,15,30,60,90,
120,150,165,
180,195,210,240,270,300,330and345
degrees.Thereasonfortestingnonuniformangular
distancesaswellasuniformonesisthattheleftand
right sides of a ship domain are often easier to
approximatethantheir foreand aftandtherefore it
makessenseto
saveonpointsatthesidesandusethe
extra points in the front and back. Examples of
uniformandnonuniformplacementof points in8
pointpolygonalapproximationsofshipdomainsare
giveninFigures6to9.
Figure6.An8pointapproximationofashipdomainfrom
Fig.1.(uniformplacementofpoints)
Figure7.An8pointapproximationofashipdomainfrom
Fig.1.(nonuniformplacementofpoints)
138
Figure8.An8pointapproximationofashipdomainfrom
Fig.2.(uniformplacementofpoints)
Figure9.An8pointapproximationofashipdomainfrom
Fig.2.(nonuniformplacementofpoints)
4 RESULTSOFTHEEXPERIMENTS
In Tables 1 to 3 the resulting course alteration
manoeuvres are shown for each scenario and each
approximation of a given ship domain. Collision
coursesectorsaregiveninTable1andtheerrorsof
approximation (the differences between values
obtained for original domains and the
polygonal
approximations) are given in Tables 2 (manoeuvres
tostarboard)and3(manoeuvrestoport).InTables4
and5thevaluesofspeedreductionandtheerrorsof
approximation (the differences between values
obtained for original domains and the polygonal
approximations)areshownrespectively.Someofthe
original domains
are also polygons with vertices
placed uniformly and as a result polygonal
approximationswillreturnnoerrors.Thereforetwo
separate averages are computed, with one of them
ignoring those polygonal domains (last rows of
Tables2to5).
As can be seen in the Tables 2 to 5, the 8point
approximations give imprecise results. For course
alterationmanoeuvressometimestheerrorisnearly
4 degrees (over 24%), which is unacceptable. The
volumeoferrors variesbetween scenarios, withthe
averagecoursealterationerrorsbeingabout10%for
manoeuvrestoport(Table2)and7%formanoeuvres
tostarboard(Table3).
Thevaluesofcoursealteration
errors are similar for uniform and nonuniform
placementofapproximationpoints.Incaseofspeed
reduction manoeuvres the uniform placement of
points again returns significant errors, the average
errorbeingabout7%(Table5).Howevertheresults
fornonuniformapproximationaremuchbetter:the
averageerror is under 4% evenwhenthe relatively
easycases(polygonaldomains)areexcluded.
Table1.Collisioncoursesectorsfororiginaldomainsandtheirautomaticpolygonalapproximations
__________________________________________________________________________________________________
Domain EncounterOriginal 8points 8points16points 16points 32points
type domain (uniform) (nonuniform) (uniform) (nonuniform) (nonuniform)
__________________________________________________________________________________________________
Fujiheadon (20.05;20.05)(19.52;19.52) (19.20;19.20) (19.82;19.82) (19.78;19.78) (19.97;19.97)
crossing (20.18;16,17)(18.17;14.29) (18.67;14.81) (18.84;15.69) (19.39;16.09) (19.90;16.02)
overtaking(20.49;20.49)(17.34;17.34) (19.42;19.42)
 (19.82;19.82) (19.76;19.76) (20.24;20.24)
Davisheadon (23.90;19.30)(20.91;17.66) (20.81;16.61) (23.85;19.17) (23.70;18.96) (23.74;19.17)
crossing (22.09;18.37)(20.30;18.16) (21.84;17.87) (21.61;18.19) (21.96;17.96) (22.04;18.30)
overtaking(20,53,16,31)(18,75,15,15) (18,39,14,69)
 (20,47,16,20) (19,94,16,11) (20,48,16,26)
Coldwell headon (21.90;10.85)(20.85;10.83) (20.34;10.47) (21.57; 10.83) (21.58;10.83) (21.71;10.83)
crossing (24.55;15.15)(20.21;14.72) (21.27;14.75) (23.15;14.79) (24.20;14.83) (24.07;14.85)
overtaking(16.24;16.24)(12.33;12.33) (13.77;13.77)
 (14.93;14.93) (16.12;16.12) (15.72;15.72)
Pietrzykowskiheadon (18.00;16.97)(17.01;16.60) (15.46;15.46) (17.24;16.66) (17.87; 16.86) (17.86;16.94)
fuzzy,γ=0.5 crossing (21.04;19.02)(18.05;17.24) (20.51;18.65) (21.04;18.25) (20.54;18.68) (21.04;18.95)
overtaking(19.06;17.82)(18.07;17.39) (
16.08;16.08) (18.13; 17.44) (19.02;17.66) (18.87;17.79)
Pietrzykowskiheadon (21.92;20.93)(19.91;18.25) (17.49;17.39) (21.70;20.57) (21.51; 20.63) (21.71;20.60)
fuzzy,γ=0.1 crossing (25.37;22.07)(23.15;22.03) (25.22;21.68) (24.88;22.06) (25.25;21.76) (25.37;22.07)
overtaking(18.09;17.16)(15.93;14.63) (
14.40;14.34) (17.91; 16.92) (17.70;16.82) (17.92;16.93)
Pietrzykowskiheadon (19.11;19.11)(19.08;19.08) (17.24;17.24) (19.11;19.11) (18.30; 18.30) (19.08;19.08)
crisp,Dmin crossing (19.36;17.92)(19.36;17.91) (19.36;16.82) (19.36;17.92) (19.36;16.91) (19.37;17.91)
overtaking(19.87;19.87)(19.86;19.86) (
19.19;19.19) (19.87; 19.87) (19.78;19.78) (19.83;19.83)
Pietrzykowskiheadon (16.00;16.00)(16.00;16.00) (15.22;15.22) (16.00;16.00) (15.81; 15.81) (15.96;15.96)
crisp,Dmean crossing (19.05;19.45)(19.05;19.45) (18.80;17.20) (19.05;19.45) (18.80;17.20) (19.04;19.42)
overtaking(16.80;16.80)(16.80;16.80) (
15.53;15.53) (16.80; 16.80) (16.46;16.46) (16.75;16.75)
139
Pietrzykowskiheadon (20.05;20.05)(20.05;20.05) (20.00;20.00) (20.05;20.05) (20.05; 20.05) (20.04;20.04)
crisp,Dmax crossing (23.57;23.44)(23.33;23.44) (23.53;20.99) (23.54;23.44) (23.54;20.99) (23.55;23.43)
overtaking(16.63;16.63)(16.63;16.63) (
16.09;16.07) (16.62; 16.62) (16.63;16.63) (16.62;16.62)
Pietrzykowskiheadon (16.17;15.27)(15.22;14.79) (16.02;14.70) (15.49;15.05) (16.06; 15.17) (15.81;15.25)
(headon
dedicateddomain)
__________________________________________________________________________________________________
Table2. Differences between manoeuvres to port for original domains and their automatic polygonal approximations
(absoluteandrelativevalues)
__________________________________________________________________________________________________
DomainEncounter 8points 8points16points 16points 32points
type(uniform) (nonuniform) (uniform) (nonuniform) (nonuniform)
__________________________________________________________________________________________________
Fujiheadon 0.53/2.63%0.85/4.22%0.23/1.15% 0.27/1.37%0.08/0.38%
crossing 2.01/9.96%1.52/7.51% 1.34/6.64%0.79/3.92%0.29/1.42%
overtaking 3.15/15.39% 1.07/5.20% 0.67/3.27%0.73/3.54%0.25/1.23%
Davisheadon 2.99/12.51% 3.09/12.92% 0.04/0.18% 0.20/0.83%0.15/0.64%
crossing 1.79/8.11%0.25/1.14% 0.48/2.19%0.13/0.60%0.05/0.25%
overtaking 1.78/8.67% 2.14/10.43% 0.07/0.32%0.59/2.89%0.05/0.27%
Coldwell headon 1.04/4.77%1.56/7.12%0.33/1.51%0.32/1.46% 0.19/0.85%
crossing 4.34/17.67% 3.28/13.38% 1.41/5.73%0.35/1.43% 0.48/1.97%
overtaking 3.91/24.09% 2.47/15.22% 1.31/8.05% 0.12/0.74%0.52/3.18%
Pietrzykowski headon 0.99/5.49% 2.54/14.10% 0.76/4.21%0.12/0.67%0.13/0.73%
fuzzy,γ=0.5 crossing 2.99/14.20% 0.53/2.51%0.00/0.00%0.49/2.35% 0.00/0.00%
overtaking 0.99/5.19% 2.98/15.62% 0.93/4.90%0.04/0.23%0.19
/0.98%
Pietrzykowski headon 2.01/9.17%4.43/20.20% 0.22/1.00%0.41/1.85% 0.21/0.95%
fuzzy,γ=0.1 crossing 2.22/8.75%0.14/0.56%0.48/1.91% 0.12/0.48%0.00/0.00%
overtaking 2.16/11.96% 3.69/20.40% 0.19/1.03% 0.40/2.19%0.18
/0.97%
Pietrzykowski headon 0.02/0.12%1.87/9.78%0.00/0.00% 0.80/4.20%0.02/0.12%
crisp,Dmin crossing 0.00/0.00%0.00/0.00%0.00/0.00% 0.00/0.00%0.01/0.06%
overtaking 0.01/0.06% 0.68/3.43%0.00/0.00%0.10/0.50% 0.04
/0.22%
Pietrzykowski headon 0.00/0.00% 0.78/4.88%0.00/0.00%0.19/1.17% 0.03/0.21%
crisp,Dmean crossing 0.00/0.00%0.25/1.33% 0.00/0.00%0.25/1.33%0.01/0.06%
overtaking 0.00/0.00% 1.26/7.52%0.00/0.00%0.34/2.03% 0.04
/0.26%
Pietrzykowski headon 0.00/0.00%0.05/0.27%0.00/0.00% 0.00/0.00%0.01/0.05%
crisp,Dmax crossing 0.23/0.98% 0.03/0.14%0.02/0.09%0.02/0.09%0.01/0.05%
overtaking 0.00/0.00% 0.54/3.24%0.01/0.07%0.00/0.00% 0.01
/0.07%
Pietrzykowski headon 0.96/5.91% 0.15/0.95%0.68/4.21%0.11/0.68% 0.36/2.24%
(headon
dedicateddomain)
__________________________________________________________________________________________________
Averagedifference1.3648/6.61% 1.446/7.28% 0.3668/1.86% 0.2756/1.33% 0.1324/0.69%
__________________________________________________________________________________________________
Averagedifference
withoutcrisppolygonal 2.12/10.26% 1.92/9.46% 0.57/2.89% 0.32/1.58% 0.20/1.00%
domainsbyPietrzykowski
__________________________________________________________________________________________________
Table3.Differencesbetweenmanoeuvrestostarboardfororiginaldomainsandtheirautomaticpolygonalapproximations
(absoluteandrelativevalues)
__________________________________________________________________________________________________
DomainEncounter 8points 8points16points 16points 32points
type(uniform) (nonuniform) (uniform) (nonuniform) (nonuniform)
__________________________________________________________________________________________________
Fujiheadon 0.53/2.63%0.85/4.22%0.23/1.15% 0.27/1.37%0.08/0.38%
crossing 1.88/11.62% 1.36/8.42%0.48/2.99% 0.08/0.48%0.15/0.95%
overtaking 3.15/15.39% 1.07/5.20% 0.67/3.27%0.73/3.54%0.25/1.23%
Davisheadon 1.65/8.54%2.69/13.94% 0.13/0.68%0.34/1.76% 0.13/0.68%
crossing 0.21/1.14%0.49/2.69% 0.18/0.96%0.41/2.21%0.07/0.36%
overtaking 1.16/7.14% 1.63/9.97%0.11/0.67%0.21/1.28% 0.05/0.34%
Coldwell headon 0.02/0.20%0.38/3.54%0.02/0.20%0.02/0.20% 0.02/0.20%
crossing 0.43/2.83%0.40/2.61% 0.36/2.39%0.32/2.10%0.30/1.96%
overtaking 3.91/24.09% 2.47/15.22% 1.31/8.05% 0.12/0.74%0.52/3.18%
Pietrzykowski headon 0.37/2.20% 1.52/8.93%0.32/1.88%0.11/0.65% 0.03/0.19%
fuzzy,γ=0.5 crossing 1.78/9.36%0.36/1.91%0.77/4.04% 0.34/1.79%0.07/0.35%
overtaking 0.43/2.40% 1.74/9.74%0.38/2.16%0.16/0.92% 0.03
/0.18%
Pietrzykowski headon 2.68/12.81% 3.54/16.90% 0.36/1.73% 0.30/1.42%0.33/1.57%
fuzzy,γ=0.1 crossing 0.04/0.20%0.40/1.79%0.01/0.05% 0.31/1.39%0.00/0.00%
overtaking 2.53/14.72% 2.82/16.45% 0.24/1.41% 0.34/1.98%0.23
/1.34%
Pietrzykowski headon 0.02/0.12% 1.87/9.78%0.00/0.00%0.80/4.20% 0.02/0.12%
crisp,Dmin crossing 0.01/0.06%1.10/6.13%0.00/0.00% 1.01/5.64%0.01/0.06%
overtaking 0.01/0.06% 0.68/3.43%0.00/0.00%0.10/0.50% 0.04
/0.22%
140
Pietrzykowski headon 0.00/0.00% 0.78/4.88%0.00/0.00%0.19/1.17% 0.03/0.21%
crisp,Dmean crossing 0.00/0.00%2.24/11.53% 0.00/0.00% 2.24/11.53% 0.02/0.11%
overtaking 0.00/0.00% 1.26/7.52%0.00/0.00%0.34/2.03% 0.04
/0.26%
Pietrzykowski headon 0.00/0.00% 0.05/0.27%0.00/0.00%0.00/0.00% 0.01/0.05%
crisp,Dmax crossing 0.00/0.00% 2.45/10.45% 0.00/0.00% 2.45/10.45% 0.01/0.05%
overtaking 0.00/0.00% 0.56/3.37%0.01/0.07%0.00/0.00% 0.01
/0.07%
Pietrzykowski headon 0.48/3.17% 0.57/3.74%0.22/1.44%0.10/0.65% 0.02/0.14%
(headon
dedicateddomain)
__________________________________________________________________________________________________
Averagedifference0.8516/4.74% 1.3312/7.30% 0.232/1.33% 0.4516/2.32% 0.0988/0.57%
__________________________________________________________________________________________________
Averagedifference
withoutcrisppolygonal 1.3281/7.22% 1.3931/7.56% 0.3618/2.00% 0.26/1.32% 0.1425/0.79%
domainsbyPietrzykowski
__________________________________________________________________________________________________
Table4. Speed reduction allowing for safe passage for original domains and their automatic polygonal approximations
(crossingencountersonly)
__________________________________________________________________________________________________
DomainEncounter 8points 8points16points 16points 32points
type(uniform) (nonuniform) (uniform) (nonuniform) (nonuniform)
__________________________________________________________________________________________________
Fuji4.394.144.154.174.244.33
Davis4.364.014.314.344.334.36
Coldwell4.364.334.344.344.364.36
Pietrzykowski,fuzzy,γ=0.5 4.624.024.524.624.534.62
Pietrzykowski,fuzzy,γ=0.1 5.284.815.225.195.225.19
Pietrzykowski,crisp, Dmin 4.334.334.334.334.334.33
Pietrzykowski,crisp, Dmean
4.264.26 4.214.264.214.26
Pietrzykowski,crisp, Dmax 5.095.095.085.095.085.08
__________________________________________________________________________________________________
Table5. Difference between safe speed reduction values computed for original domains and their automatic polygonal
approximations(absoluteandrelativevalues)
__________________________________________________________________________________________________
Domain8points 8points16points 16points 32points
(uniform) (nonuniform) (uniform) (nonuniform) (nonuniform)
__________________________________________________________________________________________________
Fuji0.25/5.68%0.23/5.34%0.22/5.01% 0.15/3.34%0.06/1.34%
Davis0.35/8.07%0.04/1.01%0.01/0.34%0.03/0.67% 0.00/0.00%
Coldwell0.03/0.67%0.01/0.34%0.01/0.34% 0.00/0.00%0.00/0.00%
Pietrzykowski,fuzzy,γ=0.5
0.60/13.00% 0.10/2.22%0.00/0.00%0.09/1.90% 0.00/0.00%
Pietrzykowski,fuzzy,γ=0.10.47/8.88%0.06/1.11%0.09/1.66% 0.06/1.11%0.09/1.66%
Pietrzykowski,crisp, Dmin0.00/0.00%0.00/0.00%0.00/0.00% 0.00/0.00%0.00/
0.00%
Pietrzykowski,crisp, Dmean0.00/0.00%0.04/1.03%0.00/0.00% 0.04/1.03%0.00/0.00%
Pietrzykowski,crisp, Dmax0.00/0.00%0.01/0.29% 0.00/0.00%0.01/0.29%0.01/0.29%
__________________________________________________________________________________________________
Averagedifference0.2125/4.54% 0.0612/2.55% 0.0412/0.92% 0.0475/1.04% 0.0187/0.38%
Averagedifferencewithout0.34/7.26% 0.088/3.82% 0.066/1.47% 0.066/1.40% 0.03/0.6%
crispdomainsbyPietrzykowski
__________________________________________________________________________________________________
Both 16point approximations fare much better
than their 8point equivalents: for course alterations
the average error is about 3 to 4 times smaller, for
speedreduction2 to3timessmaller.Forbothkinds
ofmanoeuvresthe16pointapproximationwithnon
uniform placement of points is
considerably better
thantheonewithpointsplaceduniformly(especially,
if polygonal domains are excluded). The average
errors diminish to about 1.5%‐2% for course
alterationmanoeuvres(Tables2and3)andto1.4%‐
1.5%forspeedreductionmanoeuvres(Table5).
Unsurprisingly, applying 32point approximation
(withuniform placementofpoints)
giveseven more
precise results: one can observe further
diminishments in both course alteration errors and
speed reduction errors. However, the benefits of
using the extra 16 points are relatively insignificant
this time. The average error diminishes from 1.5%‐
2% (16 point approximation with nonuniform
placement of points) to
0.8%‐1% for course
alterations(Tables2and3)andfrom1.4%to0.6%for
speedreduction(Table5).
5 SUMMARYANDCONCLUSIONS
In the course of simulation experiments that have
been carried out and presented in this paper five
polygonalapproximationsofshipdomainshavebeen
tested. The tests included
eight ship domain shapes
and three types of encounter scenarios (headon,
crossingandovertaking).Theresultshaveshownthat
8point polygonal approximations can only give a
rough idea of the collision avoidance manoeuvres
performed for the original domains. The rise in
precisionoftheapproximationhasbeensignificant
if
thenumber ofpolygon’sverticeshas beenincreased
from8to16.Theresults thathavebeenobtainedfor
16 points can be considered to be satisfactory, with
theaverageerrorsbeingbelow0.5degreeforcourse
alteration manoeuvres and below0.1knotforspeed
reduction manoeuvres. The results have
also
indicatedthesuperiorityofnonuniformplacementof
approximationpoints(usingmorepointsonthefore
andaftthanonthesides).Theprogressthathasbeen
made when further increasing the number of points
(from 16 to 32) was considerably smaller and
therefore a 16point solution has
been considered to
141
be the best choice for decision support systems
applying ship domains of polygonal shapes or
polygonal approximations of other shapes. Another
conclusionisthatanyirregulardomainshape,which
usesmorethanthose16pointsmayberedundantto
someextent.Theextrapointsdonotnecessarilycarry
significant value
in terms of their impact on the
collisionavoidancemanoeuvres, thoughthey
certainlycontributetoahigheroverallcomputational
time.
REFERENCES
ColdwellT.G. (1983). Marine Traffic Behaviour in
Restricted Waters. The Journal of Navigation. 36, 431
444.
Davis P.V., Dove M.J., Stockel C.T. (1982). A Computer
Simulation of multiShip Encounters. The Journal of
Navigation,35,347352.
Fuji J., Tanaka K. (1971). Traffic Capacity. The Journal of
Navigation,24,543552.
GoodwinE.M.(1975).AStatisticalStudyofShipDomains.
TheJournalofNavigation,28,328344.
Hansen,M. G.,Jensen,T.K.,LehnSchiøler,T.,Melchild,K.,
Rasmussen,F. M.,Ennemark, F. (2013). Empirical Ship
DomainbasedonAISData.TheJournalofNavigation,
66,931940.
Montewka J.,
Goerlandt F., Lammi H., Kujala P (2011). A
Method for Assessing a Causation Factor for a
Geometrical MDTC Model for ShipShip Collision
Probability Estimation. TransNav, the International
Journal on Marine Navigation and Safety of Sea
Transportation,Vol.5,No.3,pp.365373.
Pietrzykowski,Z.(2008).ShipʹsFuzzyDomain
aCriterion
forNavigationalSafetyinNarrowFairways.TheJournal
ofNavigation,61,499514.
Pietrzykowski Z., Uriasz J. (2009). The Ship Domain A
CriterionofNavigationalSafetyAssessmentinanOpen
SeaArea.TheJournalofNavigation,62,93108.
Pietrzykowski Z., Wielgosz M. (2011). Navigation Safety
Assessment in the Restricted Area with the Use of
ECDIS. TransNav, the International Journal on Marine
NavigationandSafetyofSeaTransportation,Vol.5,No.
1,pp.2935.
Szłapczynski R. (2007) Determining the optimal course
alteration manoeuvre in a multitarget encounter
situationforagivenshipdomainmodel.
TheAnnualof
Navigation,No.12,7585.
ŚmierzchalskiR.(2000).ShipsʹDomainsasaCollisionRisk
at Sea in the Evolutionary Trajectory Planning.
ProceedingsofRISK2000.ComputerSimulationinRisk
Analysis and Hazard Mitigation, 1113 Oct. 2000,
Southampton,UK.WITPress,4352.
Weintrit A. (2006). Presentation
of safety contours on
electronic navigational charts. Maritime Transportation
and Exploitation of Ocean and Coastal Resources‐
Proceedings of the 11th International Congress of the
International Maritime Association of the
Mediterranean,Taylor&Francis,pp.1659–1666.
Weintrit A. (2009). The Electronic Chart Display and
Information System (ECDIS), An Operational
Handbook. A
Balkema Book, CRC Press, Taylor &
FrancisGroup.
Xiang Z., Hu Q., Shi C. (2013). A Clustering Analysis for
IdentifyingAreasofCollisionRiskinRestrictedWaters.
TransNav, the International Journal on Marine
NavigationandSafetyofSeaTransportation,Vol.7,No.
1,pp.101105.