98
physics(ZhangJ.&LiuY.&,WuR.‐B.&JacobsK.&
OzdemirS.K.&LanY.&TarnT.‐J.&NoriF.2014).
Hydrology.InterestingapplicationsoftheVolterra
seriesarepresented,forexample,in(NapiórkowskiJ.
J.&StrupczewskiW.G.)andpaperscited
therein.
Navigation. Application of the Volterra filters in
solving nonlinear problems of navigation can be
found,forexample,in(ParkS.H.2007).
Transportation. Nonlinear problems of tra nsport‐
tationaretackledwiththeuseofWienermeasurein
(FeyelD.&A.S.Üstünel2004).
7 CONCLUSIONS
First, a concise
introduction to the Volterra and
Wienerserieshasbeenmadeinthispaper.Second,a
generalmodelofnonlinearsystems,calledtheWiener
modelafterhisfounder,hasbeenpresented.Also,a
modelfordescriptionofverylargenonlinearsystems,
based on the Volterra series and the so‐called
reproducing
kernelHilbertspace,hasbeendescribed.
Finally, numerous applications of the above
mathematical tools in such areas as tele‐
communications, biological sciences, oceanology,
physics, hydrology, navigation, and transportation
have been enumerated. However, because a lack of
space,theyarenotpresentedhereinmoredetail,with
some needed illustrations. This will
be done during
an oral presentation at the conference. Nevertheless,
we hope, all the examples given witness strongly
greatusefulnessof the VolterraandWiener theories
inengineering.
REFERENCES
BedrosianE.&RiceS.O.1971.Theoutputproperties
ofVolterrasystems (nonlinear systemswith
memory)drivenbyharmonicandGaussian
inputs.ProceedingsoftheIEEE,59(12):1688‐1707.
BenedettoS.&BiglieriE.&DaffaraR.1979.Modelingand
performanceevaluation of nonlinearsatellitelinks.‐
AVolterra series
approach. IEEE Trans. Aerospace
Electron.Syst.,15:494‐507.
Blümich B 1985. Stochastic NMR spectroscopy. Bulletin of
MagneticResonance,7(1):5‐26.
Borys A. 2000. Nonlinear Aspects of Telecommunications:
Discrete Volterra Series and Nonlinear Echo Cancellation.
BocaRaton,Florida:CRCPress.
Borys A. 2007, Podstawowe Analogowe i Cyfrowe Ukł
ady
Elektroniczne z Małymi Nieliniowościami Stosowane w
Telekomunikacji. Bydgoszcz: Wydawnictwa Uczelniane
UTPwBydgoszczy(inPolish).
Boudec,LeJ.‐Y.&ThiranP.2004.NetworkCalculus.ATheory
of Deterministic Queuing Systems for the Internet. Berlin:
SpringerVerlag.
BussgangJ.J.&EhrmanL.&GrahamJ.W.
1974.Analysis
ofnonlinearsystemswithmultipleinputs,Proceedings
oftheIEEE,62:1088‐1119.
Cameron R. H. & Martin W. T. 1947. The orthogonal
development of non‐linear functionals in series of
Fourier‐Hermitefunctionals.Ann.Math. ,48:385‐392.
De Figueiredo R. J. P. & Dwyer III
T. A. W. 1980. A best
approximation framework and implementation for
simulationoflarge‐scalenonlinearsystems.IEEETrans.
onCircuitsandSystems,27(11):1005‐1013.
DijkP.&WitH.P.&SegenhoutJ.M. 1994.Wienerkernel
analysisofinnerearfunctionintheAmericanbullfrog.J.
Acoust.
Soc.Am.,95(2):904‐919.
Feyel D. & A. S. Üstünel 2004. Solution of the Monge‐
Ampѐre equation on Wiener space for log‐concave
measures,arXiv:math/0403497v1,1‐24.
FliessM.& LamnabhiM.&Lamnabhi‐Lagarrigue F. 1983.
An algebraic approach to nonlinear functional
expansions. IEEE Trans. on Circuits and
Systems, 30(8):
554‐570.
GutierrezA.&RyanW.2000.PerformanceofVolterraand
MLSD receivers for nonlinear band‐limited satellite
systems. IEEE Trans. on Communications, 48(7): 1171‐
1177.
MaltzF. 2009.Nonlinear OceanWave Modeling: Beyond
The Volterra Series Expansion and Fokker‐Planck
Equation. Proceedings of the Conference
OCEANS 2009,
MTS/IEEE Biloxi‐Marine Technology for Our Future:
GlobalandLocalChallenges,1‐7.
MarmarelisP.Z.& NakaK.‐I.1972.White‐noiseanalysis
ofaneuronchain:anapplicationoftheWienertheory.
Science,175:1276‐1278.
Marmarelis V. Z. & Zhao. X. 1997. Volterra Models and
Three‐LayerPerceptrons.IEEETrans.onCommunications
onNeuralNetworks,8(6):1421‐1433.
MarmarelisV.Z.&BergerT.W.2005.Generalmethodology
fornonlinear modelingofneuralsystemswithPoisson
point‐processinputs,MathematicalBiosciences,196:1–13.
Napiórkowski J. J. & Strupczewski W.G. 1979. The
analytical determination of the kernels
of the Volterra
series describing the cascade of nonlinear reservoirs,
JournalofHydrologicSciences,6(3‐4):121‐142.
Oppenheim,A.V. 1965. Superposition in a class of nonlinear
systems. Technical Report 432, Cambridge,
Massachusetts:MIT.
ParkS.H.2007.Nonlineartrajectorynavigation.Ph.D.A.E.
thesis,TheUniversityof
Michigan,1‐191.
RughW.J.1981.NonlinearSystemTheory:TheVolterra/Wiener
Approach.Baltimore(MD):JohnsHopkinsUniv.Press.
SandbergI. W. 1982. Volterra expansions for time‐varying
nonlinear systems. Bell System Technical Journal, 61(2):
201‐225.
Sandberg I. W. 1983. On Volterra expansions for time‐
varyingnonlinearsystems.
IEEETransactionsonCircuits
andSystems,30(2):61‐67.
Sandberg I. W. 1985. Multilinear maps and uniform
boundedness.IEEE TransactionsonCircuitsand Systems,
32(4):332‐336.
Sandberg I. W. 1990. Criteria for the stability of p‐linear
mapsandp‐powers.NonlinearAnalysis:Theory,Methods,
andApplications,15(1):
69‐84.
Schetzen M. 1980. TheVolterraandWiener Theories of
NonlinearSystems,NewYork:JohnWiley&Sons.
SchetzenM.1981.Nonlinearsystemmodelingbasedonthe
Wienertheory.ProceedingsoftheIEEE,69:1557‐1573.
SclabassiR.J.&RischH.A.&HinmanC.L. &Kroin
J.S.&
Enns N. F. & Namerow N. S. 1977. Complex pattern
evoked somatosensory responses in the study of
multiplesclerosis.ProceedingsoftheIEEE,65(5):626‐633.
Volterra V. 1959. Theory of Functionals and of Integral and
Integro‐DifferentialEquations.NewYork:DoverPubl.
Wiener N. 1942. Response
of a non‐linear device to noise.
TechnicalReport129,Cambridge,Massachusetts:MIT.
Wiener N. 1958. Nonlinear Problems in Random Theory.
Cambridge,Massachusetts:MITPress.
YasuiS.1979.Stochasticfunctional Fourierseries, Volterra
series, and nonlinear systems analysis. IEEE Trans.
AutomaticControl,24(2):230‐241.
ZhangJ.&Liu
Y.&,WuR.‐B.&JacobsK.&OzdemirS.K.
& Lan Y. & Tarn T.‐J. & Nori F. 2014. Nonlinear
quantum input‐output analysis using Volterra series,
submittedtoIEEETrans.AutomaticControl.