89
1)1(3.0)],sin(1[2.0
2
1
1.0max
)(max
0
1
0
1
i
i
i
ei
i
i
iAA
(4.17)
forall
Zi .
5 CONCLUDINGREMARKS
The positivity and asymptotic stability of the
descriptor time‐varying discrete‐time linear systems
with regular pencils have been addressed. The
Weierstrass‐Kroneckertheoremonthedecomposition
of the regular pencils has been extended to the
descriptor time‐varying discrete‐time linear systems.
Solutions to the decomposed
systems have been
derived (Theorem 2.1). Necessary and sufficient
conditionsforthepositivityofthesystemshavebeen
established (Theorem 3.1). Using the norms of the
vectors and matrices sufficient conditions for
asymptoticstabilityofthepositivesystemshavebeen
derived(Theorems4.1–4.6).Theeffectivenessofthe
test
are demonstrated on examples. The proposed
method can be applied in analysis of marine
navigationandsafetyofsea transportationproblems.
The considerationscan beextended to the fractional
descriptortime‐varyingdiscrete‐timelinearsystems.
ACKNOWLEDGMENT
ThisworkwassupportedbyNationalScienceCentre
inPolandunderworkNo.2014/13/B/ST7/03467.
REFERENCES
Czornik A., Newrat A., Niezabitowski M., Szyda A. 2012.
On the Lyapunov and Bohl exponent of time‐varying
discrete linear systems, 20th Mediterranean Conf. on
ControlandAutomation(MED),Barcelona,194‐197.
CzornikA.,NiezabitowskiM. 2013a. LyapunovExponents
for Systems with Unbounded Coefficients, Dynamical
Systems:anInternationalJournal,vol.28,
no.2,140‐153.
Czornik A., Newrat A., Niezabitowski M. 2013, On the
Lyapunov exponents of a class of the secon order
discrete time linear systems with bounded
perturbations, Dynamical Systems: an International
Journal,vol.28,no.4,473‐483.
Czornik A., Niezabitowski M. 2013b. On the stability of
discrete
time‐varying linear systems, Nonlinear
Analysis:HybridSystems.vol.9,27‐41.
Czornik A., Niezabitowski M. 2013c. On the stability of
Lyapunovexponents of discrete linear system, Proc. of
EuropeanControlConf.,Zurich,2210‐2213.
CzornikA.,KlamkaJ.,NiezabitowskiM. 2014.Onthesetof
Perron exponents of discrete linear
systems, Proc. of
World Congres of the 19th International Federation of
AutomaticControl,Kapsztad,11740‐11742.
FarinaL.,RinaldiS. 2000. Positive Linear Systems; Theory
andApplications,J.Wiley,NewYork.
Kaczorek T. 2001. Positive 1D and 2D systems, Springer
Verlag,London.
Kaczorek T. 2011. Positive linear systems consisting of
n
subsystemswithdifferentfractionalorders,IEEETrans.
CircuitsandSystems,vol.58,no.6,1203‐1210.
Kaczorek T. 1998a. Positive descriptor discrete‐time linear
systems,ProblemsofNonlinearAnalysisinEngineering
Systems,vol.1,no.7,38‐54.
KaczorekT.2015.Positivedescriptortime‐varyingdiscrete‐
time linear systems, Proc.
of Conf. ACIIDS, Bali,
Indonesia,Springer‐Verlag.
Kaczorek T. 1997. Positive singular discrete time linear
systems,Bull.Pol.Acad.Techn.Sci.,vol.45,no4,619‐
631.
KaczorekT. 2012. Selected Problemsof Fractional Systems
Theory,Springer‐Verlag,Berlin.
KaczorekT.1998b.VectorsandMatricesinAutomationand
Electrotechics,WNT,
Warszawa(inPolish).
Rami M. A., Bokharaie V.S., Mason O., Wirth F.R. 2012.
Extremel norms for positive linear inclusions, 20th
International Symposium on Mathematical Theory of
NetworksandSystems,Melbourne.
Zhang H., Xie D., Zhang H., Wang G. 2014. Stability
analysis for discrete‐time switched systems with
unstablesubsytemsbya
mode‐dependentaveragedwell
timeapproach,ISATransactions,vol.53,1081‐1086.
ZhangJ.,HanZ.,WuH.,HungJ.2014.Robuststabilization
of discrete‐time positive switched systems with
uncertaintiesandaveragedwelltimeswitching,Circuits
Syst,SignalProcess.,vol.33,71‐95.
ZhongQ.,ChengJ.,ZhongS.
2013.Finite‐timeH∞control
of a switched discrete‐time system with average dwell
time,AdvancesinDifferenceEquations,vol.191.