13
1 CLOSEQUARTERSITUATIONDISTANCEAND
IMMEDIATEDANGERDISTANCE
Theunderstandingofthetermssuchas“closequarter
situation”and“immediatedanger”isveryimportant
toship’sofficers.Howtousethemcorrectlyisstilla
questionnotquitewellanswered.
Thedistance ofclose quartersituation(Dclose) is
definedasanact
iontakingdistancetoatargetship,
whenownshiptakesalargealteringcourse(suchas
90°)toavoidcollisionwiththetargetship,whichcan
makeownshippassthetargetshipattheminimum
safetydistance.
The distance of immediate danger (Dcollid) is
definedasanact
iontakingdistancetoatargetship,at
which own ship canʹt avoid collide with the target
shipbasedonownshipalonealteringcourseaction.
Thispaperwilldiscussownship’srelative motion
to a target shipand define DCPA as plus or minus.
When the target ship is on the left side of relative
motion tra
ck, define DCPA asʺpositiveʺ. When the
targetshipisontherightsideoftherelativemotion
track,defineDCPAasʺnegativeʺ.
1.1 Theshipmotionmathematicalmodels
Asshowninfigure1,OandTrepresentrespectively
theownshipandtheta
rgetship.Letthevelocityand
courseofownshipastheV
0andtheC0respectively,
thevelocityandcourseofthetargetshipareV
1andC1
respectively,azimuthforB,distanceforDist,
1
VCA
.
So,therelativevelocityV
01andrelativecourseC01of
own ship to target ship, will show respectively as
follows
[1,2,and3]
:
0011
sin( ) sin( )

x
VV C V C (1)
0011
cos( ) cos( )

y
VV C V C
(2)
1
1
01
1
(/) ( 0, 0)
90 ( 0, 0)
180 ( / ) ( 0)
270 ( 0, 0)
360 ( / ) ( 0, 0)
(0, 0)






xy x y
xy
xy y
xy
xy x y
xy
tg V V V V
VV
tg V V V
C
VV
tg V V V V
nil V V
(3)
221/2
01
()
xy
VVV
(4)
Research on Double Collision Avoidance Mechanism
of Ships at Sea
X.Y.Bi&X.J.Liu
GuangzhouMaritimeInstitute,Guangzhou,China
ABSTRACT:Whentwopowerdrivenvesselsencounteratseasoastoinvolveriskofcollision, theyneedto
avoidcollisioneffectively.TheconceptofRightShipmaymisleadthisship’sofficersthinkinghisorherdirect
navigatinghasabsolutepowerwiththisspecialship.Thispa
perwilldefineDCPAsymbols;givethecauseand
themethodofdoublecollisionavoidancemechanismofshipsatsea.
http://www.transnav.eu
the International Journal
on Marine Navigation
and Safety of Sea Transportation
Volume 9
Number 1
March 2015
DOI:10.12716/1001.09.01.01
14
Figure1.Ownship’srelativemoti on
DCPA (distance of the closest point of approach)
and TCPA (time to closest point of approach) will
showrespectivelyasfollows
[1]
:
01
sin( ) DCPA Dist C B (5)
01
01
cos( )
Dist C B
TCPA
V
(6)
1.2 Thedistanceofclosequartersituation
Asshowninfigure2,letsafetyencounterdistancebe
DSPA,namelytheradiusofthecircleTinthisfigure,
theturningradiusofownshipbeR.Whenownship
arriveatpointAinrelativemotiontothe
targetship,
it begin to give way altering course tostarboard.
TheownshipwillgettopointEinthiscourseafter
doubleship’slengthwhichiscalledthelagdistance.
The own ship begin turning from point E, reached
pointE
1intruemotionontheturningcircleH,while
target ship along her course C
1 to get point T1. The
own ship turning circle H tangents the target ship
safetyencounterdistanceT
1atpointE1.So, segment
ATisthedistanceofclosequartersituationshowas
D. This closequarter situation distance can be
calculated by the relative motion equation of own
ship.
Letthecycleofownship’sturningcircleunderfull
rudderbet
0minutes,turningangularvelocitybe
ω
,
the own ship takes t
0 minutes completing relative
movementtothetargetfrompointOtopointE.Then
theownshipbyturningmovementfromthepointE
to the point E
1, at this time the target ship carrying
safetydistance circlemovein linearfrom point Tto
point T
1, it takes time interval of t1‐t0, the turning
circleradius(R)isgenerallydoubletheshipʹslength,
then
0
2
T
(7)
Figure2. The distance to target ship in closequarter
situation
In Cartesian coordinate system XOY, the relative
motiontrajectoryequationofownshipfrompointO
(t=0),thenpassingE(t=t
0),tothepointE2(t= t1)can
beexpressedasfollows.
000
000
10 010 1
10 010 01
1 cos( ( )) sin( ( )) cos( )
sin( ( )) cos( ( )) 1 sin( )
() sin()
() sin()














tt tt C
X
R
tt tt C
Y
Vt t Vt C
Vt t Vt C
(8)
11
222
( sin()) (Y cos())


tt tt
DSPA X Dist B Dist B (9)
Decoding formula (7)‐(9), making the ship’s
distancetothetargetatthetangentpointE
1equalto
thesafetyencounterdistance,wecangett
0andt1,so
we can solve the closequarter situation distance
(Dclose=D).
1
22
0
2
01 0
0
2
((( )))

L
DDCPA VTCPAt
V
(10)
The own ship’s maximum altering course to the
rightwillbeasfollow.
10
0
2( )


tt
C
T
(11)
In the same way, considering the own ship as a
onepoint,theextentofthetargetshipwillexpandto
thesumoftwo shipʹslength, L
0 + L1,replace itwith
the DSPA in formula (9), we can get the collision
distance(Dcollid=D)andtheownship’smaximum
alteringcoursetostarboard.Ifthelengthofthetarget
shipisunknown,wecantakeadesirableL
1=330mto
getaconservativeestimatecollisiondistance.
2 EXAMPLES
2.1 Theactionofgivewayship
LetownshiplengthbeL
0=190m,velocityandcourse
as V
0=16 kns and C0=000° respectively, velocity and
15
courseofthetargetshiparerespectivelyV
1=18kns
C
1=240°,the azimuthof target ship is B=30°,
distanceD=8nauticalmiles.
So, according to the formula above, we can get
owe ship’s relative speed to the target ship V
01=29.5
knots, the relative course C
01=32°.0. Target ship is
locatedontheleftsideoftherelativemovementline,
theDCPA=+0.27nmiles,theTCPA=16.3minutes.
Figure3.Thecollisionriskandrelativemotiontotargetof
givewayship
TakingDSPA=1.0nauticalmiles,letthesumofthe
two ship length be the maximum, L
0+L1= 190+330=
520m= 0.28 nautical miles, the turning circle radius
(R) be double the shipʹs length, 380m=0.21 nautical
miles, the period of own ship turning circle be 5
minutes, wecan calculate the closequarter situation
distanceDclose=2.13nauticalmiles,atthatpointown
shipwillaltercourse
2°tostarboardside,wecanalso
calculate the collision distance Dcollid=0.59 nautical
miles,atthatpointownshipshouldaltercourse7°.2
tostarboardsidetoavoidcollision.
Anothercurveinthefigureiscollisionriskcurve.
This curve can be used to determine collision
avoidanceopportunity and
thevalueof thecollision
avoidanceaction.Forthisexampletheopportunityof
actiontakingis3.8nauticalmilesfromthetargetship,
theactionvalueisalteringcourse24°tostarboard.
2.2 Theactionofstandonship
LetownshiplengthbeL
0=190m,velocityandcourse
as V
0=18 kns and C0=240° respectively, velocity and
courseofthetargetshiparerespectivelyV
1=16kns
C
1=000°,the azimuthof target ship is B=210°,
distanceD=8nauticalmiles.
So, according to the formula above, we can get
owe ship’s relative speed to the target ship V
01=29.5
knots, the relative course C
01=212°.0. Target ship is
locatedontheleftsideoftherelativemovementline,
theDCPA=+0.27nmiles,theTCPA=16.3minutes.
Figure4.Thecollisionriskandrelativemotiontotargetof
standonship
TakingDSPA=1.0nauticalmiles,letthesumofthe
two ship length be the maximum, L
0+L1= 190+330=
520m= 0.28 nautical miles, the turning circle radius
(R) be double the shipʹs length, 380m=0.21 nautical
miles, the period of own ship turning circle be 5
minutes, wecan calculate the closequarter situation
distanceDclose=1.94nauticalmiles,atthatpointown
shipwill alter course
180°tostarboard side, we can
also calculate the collision distance Dcollid=0.55
nautical miles,at that point own ship should alter
course14°.4tostarboardside toavoidcollision.The
opportunityofactiontakingis3.3nauticalmilesfrom
thetargetship;theactionvalueisalteringcourse24°
tostarboard.
3 THERELATIONSHIPBETWEENTHESETWO
DISTANCES
In case of crossing situation, the distance of close
quartersituationofgivewayshipisgreaterthanthat
ofthestandonship.Inthecaseaboveitisabout0.19
nauticalmiles,whichisequivalentto23seconds.The
minimum
limit of the giveway ship’s collision
avoidance action must not drag to the closequarter
situation distance in order to give standon ship
enoughtimetotakenecessaryactionalone.Basedon
theaboveexample,takingdifferentbearingsoftarget
ship,wegetasetofnumericalsimulation;
theresults
of own ship’s action as giveway ship are shown in
table1.
Table1. Crossing simulation calculation giveway ship’s
action, (safety passing distance DSPA=1’.0, V
1=18, C1 =240,
D=8.0,V
01=29.5,C01=32,TCPA=16.3)
_______________________________________________
No.TargetshipOwnship (givewayship) action
___________________________________________
B DCPA Dclose C0 Dcollid C0 DactC0
_______________________________________________
1 28 0.55 1.89 81.4‐‐2.920
2 29 0.41 2.02 95.0‐‐3.223
3 30 0.27 2.13 108.7 0.59 7.2 3.824
4 31 0.13 2.21 113.8 0.96 50.4 4.127
5 32 0.01 2.29 126.7 1.15 72 4.230
6 33 0.15 2.35 137.5 1.19 93.6 4.532
7
 34 0.29 2.40 153.4‐‐4.734
_______________________________________________
Also, considering the standon ship taking action
alone,takingdifferentbearingsoftargetship,weget
16
a set of numerical simulation; the results of own
ship’sactionasstandonshipareshownintable2.
Table2. Crossing simulation calculation standon ship’s
action, (safety passing distance DSPA=1’.0, V
1=16, C1 =0,
D=8.0,V
01=29.5,C01=212,TCPA=16.3)
_______________________________________________
No. Targetship Ownship (standonship) action
___________________________________________
B DCPA Dclose C0 Dcollid C0DactC0
_______________________________________________
1 208 0.55 1.83 177.8‐‐2.8 18
2 209 0.41 1.90 178.6‐‐3.0 21
3 210 0.27 1.94 180.0 0.55 14.4 3.324
4 211 0.13 1.97 175.0 0.96 172.8 3.626
5 212‐0.01 1.99 112.3 1.01 93.6 3.828
6 213‐0.15 1.99 108.0 1.01 86.4 4.229
7
 214‐0.29 1.98 108.7‐‐4.4 31
_______________________________________________
Comparing the collision avoidance action results
intable1andtable2,thegivewayship’sdistanceof
closequartersituationislonger0.06to0.42milesthan
thatofthestandonship,whichisequivalentto7 to
51 seconds. The duty officer on the giveway ship
should
fully consider the standon ship officer’s
psychology bearing ability and take early collision
avoidanceaction.
Also, we can get the result that the distance of
giveway ship’s closequarter situation is larger 1.16
to1.46milesthanitscollisiondistance.Such ashort
time interval will not allow
the officer take any
hesitationandrequirehimorherinatimelymanner
to make correct collision avoidance decisionmaking
andtakedirectactions.
4 CONCEPTOFDOUBLECOLLISION
AVOIDANCEANDCLOSEQUARTER
SITUATION
Ship’s collision segments will include the free
navigationatadistance,riskofcollision,closequarter
situation, imminent danger and collision
[5, 6]
. From
late segment of the risk of collision to the early
segmentclosequartersituation is theforming phase
of closequarter situation and is the most important
momentofthemanipulatingactionaloneforthetwo
ships. After the two ships coordinated action, by
avoiding the closequarter situation,
these two ships
can pass in a safety distance and can sufficiently
avoidcollision.
Inrule8ActiontoavoidCollision paragraph(a),
theminimumlimitofʺampletimeʺshouldbenotto
form the closequarter situation. The standon ship
ʺmay however take action to avoid collision by
her
manoeuvrealoneʺisthekeyofnotletthevesselsfall
inclosequartersituation.Sincethen,thereisnomore
absoluteRightrouteforthestandonship.Thestand
on ship must bear the obligation of action alone to
avoidclosequartersituation.Theconceptofʺdouble
collision avoidanceʺ in the modified collision
regulationshasbeenclearly revealedwhich requires
ship officers to have clear quantitative distance
figures.
Thekeystepand thefirst priorityof establishing
practice for preventing collision at sea are to avoid
closequarter situation. The outlook, judgment,
decisionmaking, action and validation segments
shouldbearoundthisfirstprioritysoastograspthe
crucial point of collision avoidance. If this concept
becomescommoncognitiveandwidelybeused,more
andmoreshipmanipulations couldleadtosafepass
inadesirabledistance.
5 CONCLUSION
Through calculating the distance of closequarter
situation,
wefindthattheactionofgivewayvesselis
easier to achieve the desired effect of collision
avoidancethanthatofthestandonship.Wesuggest
that the giveway vessel’s collision avoidance action
should be strictly observed to make it not lose the
good anticollision opportunity. In
fact, all ships are
responsibletoensurenavigationsafetyandprotection
ofthe marineenvironment and arethe main partof
the obligations. The division of standon ship and
givewayshipbythecollisionavoidancerulesisonly
thedivisionofobligationforcollisionavoidanceand
not to
exempt the standon ship from liability of
complyingwiththeobligations.Thegivewayvessel,
however,shouldfullyrecognizeherownadvantages,
give the standon ship more behavior space and
relieve the psychological pressure of standon ship
officer.Becausethepurposeofpracticeforpreventing
collisionatsea
istoavoidclosequartersituation, we
should advocates the concept ofʺdouble collision
avoidanceʺ. Estimating the closequarter situation
distanceandtheimmediatedangerdistancecorrectly
will helpthe navigator fullyunderstand the process
of collision avoidance and take correct collision
avoidance action in a timely manner. This
massage,
nodoubt,will increasethe navigator’sresponsibility
andselfconfidenceofanticollisionmanipulationand
will be the basis of analyzing specific encounter
situationandcollisionavoidancedecisionmaking.
REFERENCES
[1]Bi Xiuying. Study on Ship’s Collision Risk Index and
CollisionAvoidanceModel[D],Dalian:Dalianmaritime
university,2000
[2]Hayama IMAZU. Study on the Time Required for
Collision Avoidance [C] // Tokyo University of
MercantileMarine.1992,9:123129
[3]K.H.Kwik. Collision Prevention by Precalculated
Evasive Manoeuvres [C] // Eleventh Ship Control
SystemsSymposium.Southampton,UK. 1997:1121
[4]WuZhaoLin.TheShip’sCollisionAvoidingandWatch
Keeping [M]. Dalian: Dalian maritime university
PublishingHouse,1998:3540
[5]YanQingxin.Thequantitysearchthattheshipavoidsto
touch.ThejournalofWuhantransportationscienceand
technologyuniversity[J],1997,21(6):1215
[6]ZhaoJinsongetc..CollisionandcollisionavoidingRules
[M]. Dalian: Dalian maritime university Publishing
House,1997:205218