611
6
CONCLUSIONS
The main purpose of this research, is the
investigation of personal satisfaction of a user of
MET equipment (Engine room simulator) via the
assistance of language techniques but also other
methodslikeMMR(questionnaires‐interviews).
The main elements of the proposed approach
include: speech recording for sentiment/opinion
analysis, Usability testing
procedure (SUS),
Attitudes/views questionnaires. The first results are
shows:
The Total N / Sum Mdf Index depending from
personalsatisfaction(growingfromveryhigh
→
high satisfaction) in Scenario & Simulator
satisfaction.
The Topology (PTOP) for sentiment/opinion
phrases in user’s answers extending all the
answer.
The most used words in sentiment phrases is
“αρκετά(enough)”&πολύ(alot/very)(simulator&
Scenariosatisfactionformusersanswers)andthe
most used phrase in user’s answers has this
format:(mdf|auxiliaryverb)+satisfied(verb)
&mdf+adjective|noun|verb.
Very High personal satisfactionforsimulator
(majority) and high personal satisfactionfor
simulator(majority).
In sentiment/opinion analysis, we observe the
MeanMdfIndexis2approximatelyforallcases.
Theresearchcontinueswiththenumeralincrease
ofthesampleandthetotalprocessingandevaluation
oftheresearchfindings(qualitativeandquantitative
data). The proposed approach may require further
adaptationstoaccommodateevaluationofparticular
interactivesystem s.
REFERENCES
Brannen, J. 1995. Combining qualitative and quantitative
ap‐proaches: An overview, J. Brannen (ed.), Mixing
Methods: Qualitative and Quantitative Research.
UK:Avebury,3‐38.
Bryman, J. 1995. Quantitative and qualitative
research:furtherreflectionsontheirintegration,Mixing
Methods: Qualita‐tive and Quantitative Research.
UK:Avebury,57‐80.
Brooke,J.1996. SUS:A“quick
anddirty”usabilityscale.In:
Jordan, P. W., Thomas, B., Weerdmeester, B. A.,
McClelland (eds.) Usability Evaluation in Industry,
Taylor&Francis,London,UKpp.189‐194.
Choi, Y. and Cardie, C.2008. Learning with
compositionalsemanticsasstructuralinferenceforsub
sentential sentiment analysis, Proceedings of the
Conferenceon
EmpiricalMethodsinNaturalLanguage
Processing (EMNLP 2008), pp. 793–801, Honolul,
Hawaii.
Crook,C.1994.Computers andthe collaborative experience of
learning.London,Routledge.
Cowley,J.,1995.TheConceptoftheISMCode.Proceeding
ofManagementandOperationofShips:PracticalTechniques
for Today and Tomorrow, The Institute of Marine
Engineers,24‐25May1995,London,Paper1.
Czaja,R.andBlair, J. 1996. Designing surveys: Aguide to
decisions and procedures, Thousand Oaks, CA, Pine
ForgePress.
Dix, A. Finlay, J. Abowd, G. D. Beale, R. 2004. Human‐
ComputerInteraction,UK:PearsonEducationLimited.
Eirinaki, M. Pisa, S. Singh, J. 2012.
Feature‐based opinion
miningandranking,Journal of Computer and System
Sciences78,pp.1175–1184
Fidel,R.2008.Arewethereyet?:Mixedmethodsresearch
inlibraryandinformationscience,Library&Information
ScienceResearch,pp.265‐72.
Fontaine,J.R.Scherer,K.R.Roesch,E.B.Ellsworth,P.C.
2007. The world of emotions is not two‐dimensional ,
PsychologicalScience,18(2),pp.1050‐1057.
Fotopoulou,A.Mini,M.Pantazara,M.Moustaki,A.2009.
“La combinatoire lexicale des noms de sentiments en
grec moderne”, in Le lexique des emotions, I. Navacova
andA.Tutin,Eds.Grenoble :ELLUG.
HagertyM,
JustMA.1993.Constructingmentalmodelsof
machinesfromtextanddiagrams,JournalofMemoryand
Language32,pp.71‐42
Hatzivassiloglou,V.andMcKeown,K.B.1997.Predicting
the semantic orientation of adjectives, Proceedings of
ACL‐97,Madrid,Spain.
IMO‐International,MaritimeOrganization,2003.Issuesfor
trainingseafarersresultingfrom
theimplementationon
boardtechnology,STW34/INF.6.
ISO 9241,ʺErgonomics of Human System Interactionʺ,
http://www.iso.org.
John,B.E.,andMarks,S.J.1997.Trackingtheeffectiveness
of usability evaluation methods, Behaviour and
InformationTechnology,16,4,pp188‐202.
Jia, L. Yu, C.T. Meng, W. 2009. The effect of negation
on
sentiment analysis and retrieval effectiveness,
ProceedingsofCIKM2009,China.
Kantner, L., Sova, H.L., Rosenbaum, S. 2003. Alternative
Methods for Usability Research, SIGDOC’03, San
Francisco,California,USA.
Kim,S.‐M.andHovy,E. 2004.Determiningthesentiment
of opinions, in: Proceedings of the 20th International
ConferenceonComputationalLinguistics,COLING’04.
Kluj, S. 2002. Relationship between learning goals and
propersimulator,ICERRS5Paper.
Kotzabasis, P.2011. Human‐Computer Interaction:
Principles, methods and examples, Athens, Kleidarithmos
(inGreek).
Lambov, D. Pais, S. Dias, G. 2011. Merged Agreement
Algorithms for Domain Independent Sentiment
Analysis, Pacific Association, For Computational
Linguistics (PACLING 2011), Procedia‐Socila
and
BehaviouralSciences,27,pp.248‐257.
Lazarous, R. S. 1982. Thoughts on the Relation between
Emotion and Cognition, American Psychologist, 24, pp.
210‐222.
Malatesta,L.2009.“Human–ComputerInteractionbased
in analysis and synthesis optical data”, Phd Thesis,
Athens(inGreek),NTUA.
Meena, A. and
Prabhakar, T.V. 2007. Sentence level
sentiment analysis in the presence of conjuncts using
linguisticanalysis,in:Proceedingsofthe29thEuropean
ConferenceonIRResearch,ECIR’07.
Moilanen,K.andPulman,S.2007.Sentimentcomposition,
Proceedingsofthe Conference on Recent Advances in
NaturalLanguageProcessing(RANLP),Bulgaria.
Maks, I. and
Vossen, P. 2012. A lexicon model for deep
sentiment analysis and opinion mining applications,
DecisionSupportSystems53,pp.680‐88.
Nielsen,J.1994.UsabilityEngineering,AcademicPress Inc.
Nielsen, J, and Mack, R.L. (eds.) 1994. Usability Inspection
Methods,NewYork,JohnWiley.
Norman, K.l. 2006. Levels of Automation and
User
Participation in Usability Testing, Interacting with
computers,Elsevier.
Pinker, S. Jackendorff, R. 2005. The faculty of language:
what’sspecialaboutit?,Cognition,95, pp.201‐236.
Österman, C. Rose, L. Osvalder, A.L. 2010. Exploring
maritime ergonomics from a bottom line perspective,
WMUJournalofMaritimeAffairs,Volume9,Number
2,
pp153‐168.