581
kk
fx d , (11)
Step3.Set
k1 k k k
xx d.
Theorem2.
Let
0n
x be arbitrary fixed, and
k
k0
x the
sequencegeneratedbythealgorithm
RH.Then,either
it exists
0
k0 such that
0
k
fx 0, or
k
k
limf x 0 .
4
THETRANSPORTATIONPROBLEM
Aclassicaltransportationproblemimpliesfindingthe
minimumcostof transportingcertainquantitiesofa
single type of commodity from a given number of
loading ports (sources) to a given number of
unloadingports(destinations).
At each source
i
i 1,...,n
S , supplies
i
i
s 1,...,n
ofsomegoodsareavailable,andateachdestination
j
1,...,m
D some demands
j
j
d1,...,m
are
requested. Table 1 illustrates the classical
transportation problem,
ij
i 1,...,n ,j 1,...,m
c being the
costsofshippingoneunitofcommodityfromsource
i
S todestination
D .
Table1.Theclassicaltransportationproblem
_______________________________________________
D1 D2 D3 … DmSupply(s)
_______________________________________________
S1c11 c12 c13 … c1ms1
S2c21 c22 c23 … c2ms2
…… … … … ……
S
ncn1 cn2 cn3 … cnms n
_______________________________________________
Demand(d) d1 d2 d3 … dm
_______________________________________________
If we denote by
ij
x,i 1,...,n,j 1,...,m the
number of units transported from source
i
S to
destination
D , we get the following mathematical
modelofthe(classical)transportationproblem:
nm
ij ij
i1j1
min c x (12)
n
ij j
i1
s.t. x d ,j 1,...,m (*)
m
ij i
j1
xs,i 1,...,n (**)
ij
x0,i 1,...,n,j 1,...,m.
Remark1.
Some arguments for the relations (*)‐(**) are as
follows:
for(*):ateachdestination,thedemandhasto be
”at least” satisfied (e.g. the construction of a
buildingwillnotbestarted if we do not have at
leastaminimalamountofmaterials)
for(**):allavailableunitsmustbesupplied.
Theproblemiscalled
balancedifthetotalsupply
equals the total demand (i.e.
nm
ij
i1 j1
sd) and
unbalanced otherwise. In the balanced case or the
unbalancedonewith
nm
ij
i1 j1
sd,thelinearprogram
(12)isconsistentandwellknownmethods(including
Simplex‐type algorithms) are available (see [4]). We
willconsiderinthispapertheunbalancedcase
nm
ij
i1 j1
sd (13)
for which the linear program (12) becomes
inconsistent.
Let us suppose that there exist 7 sources of
containers
17
S ,...,S and7warehouses
17
D ,...,D .
Wewillconsidertheunbalancedandinconsistent
transportationproblem
PdescribedinTable2.
Table2.Theunbalancedtransportationproblem(P)
_______________________________________________
D1 D2 D3 D4 D5 D6 D7 Supply(s)
_______________________________________________
S13 3 4 12 20 5 9 1050
S
27 1 5 3 6 8 4 350
S
35 4 7 6 5 12 3 470
S
44 5 14 10 9 8 7 600
S
58 2 12 9 8 4 2 600
S
66 1 8 7 2 3 1 480
S
79 10 6 8 7 6 5 450
_______________________________________________
Demand(d) 455 320 540 460 760 830 780
_______________________________________________
Afterapplyingaseriesofrefinements(see[2]),we
canwritetheproblem
Pasthelinearprogram
min c,y s.t.By d,y0 (14)
withthecorrespondingdualproblemgivenby
T
max d,u s.t.Bu c,u0 (15)
In [2] we also proved a result that gives us the
possibilitytoexpressinanequivalentwaytheprimal‐
dual pair of linear programs (14‐15) as the linear
systemofinequalities(1)where
TT
T
0
cd
d
B0
A,b
c
0B
0
I0
0
0I
(16)
So,insteadofsolvingthelinearprograms(14‐15),
onecouldsolvethesystem(1)byapplyingtheHan‐
typealgorithms.