384
Three values of tunnel height were considered
(Table 6). For each height the diameter of ducted
propeller was determined with assumption, that
nozzleisintegratedwithshiphull.Usingthetestdata
of Ka4‐70 screw series in nozzle 19A the propeller
pitchwasdesignedsoastoachievemaximum
thrust
atgivenadvancespeedV
A=2.1m/s.Thrustofpropeller
and mean pressure gradient in propeller disk were
determinedforthreeva luesof shipspeed,basedon
propulsive characteristics. The results are presented
inTable6.
Table6.Diameterandthrustofductedpropellers designed
forvirtualpushboat
_______________________________________________
hw D Z0 n VS T p
[m] [m] [m] [rps] [m/s] [kN] [kPa]
_______________________________________________
1.10.91 0.64 12.0 0.10 37 56.9
1.56 33 50.7
3.12 24 36.9
1.31.08 0.75 7.50.10 44 48.0
2.31 35 38.2
3.47 31 33.8
1.51.24 0.87 6.67 0.10 48 39.7
2.36 37 30.6
3.54 32 26.5
_______________________________________________
UsingCFDsoftwareAnsysFluentandtheactuator
diskwithpressuregradienttosimulatetheactionof
propeller a series of numerical computations were
carriedoutatwaterdepthof1.5and3.0m.Thevalues
ofnominalwakefractionandthrustdeductionfactor
determined for virtual pushboat are presented
in
Table7.
Table7. Nominalwakefractionandthrustdeductionfactor
determinedforvirtualpushboat
_______________________________________________
hw[m] VS[m/s] h/T wnt
_______________________________________________
1.13.121.50.837 0.302
3.00.679 0.285
1.33.471.50.861 0.299
3.00.752 0.320
1.53.541.50.899 0.394
3.00.733 0.403
_______________________________________________
5 CONCLUSIONS
Due to the little amount of data the conclusions are
ratherqualitativethanquantitativeandrefertomodel
scale,however,shallbevalidalsoinfullscale.
The results of model tests and numerical
computations show that operating parameters
considered in this paper, i.e. ship loading (or
corresponding
ship draught), water depth and ship
speed, affect the values of both wake fraction and
thrustdeductionfactor.
Considering inland waterway vessels with stern
tunnels that do not rise above free surface of water
(h
w<h), as motor cargo vessels with full or partial
loading,onemayexpectthat:
The increase of ship speed in deep as well as in
shallowwatercauses thedecreaseofwakefraction
andincreaseofthrustdeductionfactor.Athigher
speeds in deep water the wake fraction
becomes
steady. In shallow water the wake fraction
decreases until depth Froude number (Fn
h =
V
S/(gh)
1/2
) reaches the value of 0.65. Operation of
cargo vessels at higher speed is unprofitableand
may cause grounding due to intensive trim and
sinkageofship.
Change of ship loading (and corresponding
change of ship draught) in deep water does not
affectthepropeller‐hullinteractioncoefficients.
In
shallowwaterboththereductionofwaterdepth
as well as the increase of ship draught result in
decreaseofunder‐keel clearance and inthesame
trendsinvariationofinteractioncoefficients:when
the distance between hull and waterway bottom
(or h/T ratio) decreases, wake fraction also
decreasesand
thrustdeductionfactorincreases.
The effective wake fraction determined with
assumptionoftorqueidentitydiffers significantly
from that determined with assumption of thrust
identity.
In the case of pushed barge trains the change of
barge loading (or change of barge draught) does nor
affect the draught of pushboat, and implies the change
of hull form. Regularities in variation of interaction
coefficients observed in the case of motor cargo vessel
may not obey in the case of pushed barge trains.
The results of model tests and numerical computa-
tions also show that the height of stern tunnels affects
the flow around ship considerably, and, in conse-
quence, the value of thrust deduction factor.
REFERENCES
[1]Graff, W.: Untersuchungen über Änderungen von Sog
und Nachstrom auf beschrankter Wassertiefe in
stehendenundstromendernWasser,Schiffstechnik,Bd.
8,H.44,1961
[2]BadaniamodeloweOBM,CentrumTechnikiOkrętowej,
Gdańsk1975
[3]Luthra, G.: Untersuchung der Nachstromverteilung an
einem 2‐Schrauben‐Binnengutermotorschiff,
Versuchsanstalt für Binnenschiffbau E.V., Duisburg,
Bericht
Nr.788
[4]Luthra,G.:UntersuchungderNachstomverteilungeines
imVerbandschiebendenSchubbootsinPontonformmit
einer zwecks Verbesserung zum Propeller geänderten
Zwierumpf‐Unterwasserformgebung, Versuchsanstalt
fürBinnenschiffbauE.V.,Duisburg,BerichtNr.702
[5]Luthra,G.:UntersuchungderNachstromverhältnissean
Drei‐undVier‐Schrauben‐Schubbooten,Versuchsanstalt
fürBinnenschiffbauE.V.,Duisburg,Bericht
Nr.919
[6]Kulczyk, J.: Modelowanie numeryczne oddziaływań
hydrodynamicznych w układzie napędowym statku
śródlądowego, Prace Naukowe Instytutu Konstrukcji i
Eksploatacji Maszyn, Politechnika Wroc ławska, Seria:
Monografie,Nr17,Wrocław,1992
[7]Kulczyk, J., Tabaczek, T., Zawiślak, M., Zieli ński, A.,
Werszko, R.: Numeryczne modelowanie
przepływu
lepkiego wokół kadłuba statkuśródlądowego na
ograniczonej drodze wodnej, Instytut Konstrukcji i
EksploatacjiMaszyn,PolitechnikaWrocławska,Raportz
seriiPreprinty,NrS‐043/03,Wrocław,2003
[8]Kulczyk, J.; Winter, J.:Śródlądowy transport wodny,
Oficyna Wydawnicza Politechniki Wrocławskiej,
Wrocław,2003
[9]InternationalTowing
TankConference:QualitySystems
Manual, Version 2011,ITTC Recommended
ProceduresandGuidelines