143
1 INTRODUCTION
Rapidly developing industry and technology since
the 19th century lead to increased oil production
whichbecamethemanagingpoweroftheeconomic
structureandinturntoday’slargescalecommercial
oilcirculationisemerged(Soylu,2000).Asoneofthe
mostsignificantelementsofdevelopment,theenergy
and efficient use of such energy necessi
tated
connecting the countries supplying the energy to
demandingcentersviavarious transportationways,
aboveall,viapipelines inourworldgoingthrougha
rapid globalization process. Pipe line transportation
is fast, economic and safe. Furthermore, the large
scaleinvestmentissatisfiedinashortti
me.Startedat
the end of 19th century with small scale and short
distance lines, today, the oil and natural gas
transportation turned towards for longer distances
andathighpressuresviapipewithwiderdiameters
inparallelwiththeincreasedconsumption,demand
andtechnologicaladvancements(ÇubukandCansız,
2005).
While the pipe line tra
nsportation is a high cost
investment compared to land and maritime
transport,thepipelinetransportationhasadvantages
such as being faster, safer and more ecological
compared to other transportation modes and not
being affected by atmosphericconditions as well as
having a shorter return on invest
ment period.
Therefore, transporting oil and natural gas to the
consumption areas via pipe lines in the most
economicalwaystandsout(TUBİTAK,2003).
Generally,pipelinesareexaminedintwogroups
ascrudeoilpipelinesandnaturalgaspipelines.The
oil is tra nsported to ports or markets from regions
with rich fields via crude oil pipelines (Çubuk and
Ca
nsız,2005).Constitutingthebasisofthemaritime
system, ports are the locations where ships and
marinevesselsberth,andperformoperationssuchas
Simulation Model on Determining of
Port Capacity
and Queue Size: A Case Study for BOTAS Ceyhan
Marine Terminal
Ö.Uğurlu&E.Yüksekyıldız
M
aritimeTransportationandManagementEngineeringDepartment,KaradenizTechnicalUniversity,Trabzon,Turkey
E.Köse
NavalArchitectureandMarineEngineeringDepartment,KaradenizTechnicalUniversity,Trabzon,Turkey
ABSTRACT: Simulation programs are a useful and effective tool for analysis of projects requiring high
investmentcosts,studiestoimprovethefunctioningofanexistingsystem,andtheanalysisoftheeffectiveness
andefficiency.Theymakeitpossibletocontrolofsystemorsubstructurebylessinvest
mentcost.Simulation
modelsareoftenusedinportmodeling,capacityanalysis,queuesizeandportefficiency.
Inthisstudy,simulationmodelofloadingterminalsoftheBOTAŞCeyhanpipelineweredone.Forthisreason,
AWESIMsimulationprogramwasused.Thismodelingevaluatedfor365daysandeachshiphasa
pproached
theportwithintervalsof1224,1236,2436and2448hours.Stormydaysinayearhavebeenassumedas30.
Each ship demands trailer and pilotage service when approaching and leaving the port. In this simulation
model;shiptypes,capacities,comingfrequencies,loadingti
mes,maneuveringtimeandtransportationcapacity
ofBOTAŞCeyhanMarineTerminalwereinvestigated.
http://www.transnav.eu
the International Journal
on Marine Navigation
and Safety of Sea Transportation
Volume 8
Number 1
March 2014
DOI:10.12716/1001.08.01.16
144
loading, unloading, maintenance and supply. It is
difficult to solve the problems of ports analytically.
The complexity of port functions has a complex
structure dynamically, as in production systems.
Utilizing simulation system in analysis of complex
structureisinevitable(Demircietal.,2000;Demirci,
2003).Simulation isa scientificmethodology
that is
performed to understand the behavior of a real
system without disrupting its environment.
Simulation has been used in different systems such
asurban, economic, production, transportation, and
the maritime field (Hassan, 1993). In the maritime
field, for example, simulation methods were
constructedtoanalyzetheimpactofterminal
layouts
and to determine the optimum level of equipment
investment(Hayuth,1994).
2 LITERATUREREVIEW
Simulationapplicationsareoneofthemostadvanced
and powerful in system analysis. The simulation
approach would enable the designer and analyst to
foresee the behavior of such system (Azadeh and
Farahani, 1998). Simulation applications are
often
usedonportmodeling.
In the study conducted by Alan, B. Pritsker the
frequency of vessels arriving at a tanker port in
Africa, their duration at the port, days with stormy
weatherareassessedandtheoperabilityoftheport
and the tugboat activity are evaluated (Pritsker,
1986).Teo
(1993)builtananimatedsimulationmodel
ofacontainerport and investigatedthe movements
of containers with automatic guided vehicles (Teo,
1993). Ramani (1996) has developed an interactive
computer simulation model in order to support the
logistic planning of container operations (Ramani,
1996). In the study conducted by Köse, Başar,
Demirci, Güneroğlu and Erkebay, the traffic stream
of the Bosphorus is modeled in AWESIM and
investigated the effects of the new pipe line to be
built on the strait traffic (Köse et al., 2003). In the
study conducted by Yeo, Roe and Soak (2007), the
maritimetrafficcongestionpotential
ofBusanportis
evaluated using an AWESIM simulation model.
They concluded that one of the existing mooring
berthswithintheharborreachneedstoberemoved
andtwoquaysshallbeexpandedinordertoprevent
thetrafficcongestion(Yeoetal.,2007).
3 METHOD
Investigatingthesystembehaviors
usingsimulation
techniqueaimstopredictthefuturebehaviorsofthe
existing or future system to be built. In studies
conductedusingsimulations,itispossibletoseethe
results by applying strategies merely on the
simulationmodelwithoutmakinganychangestothe
actualsystem(Ali,2008;Demirciet
al.,2000).Onthe
other hand designing simulation models is difficult
andtimeconsumingandallowsmaking predictions
regarding the actual system. Simulation studies
generally consist of various stages. These well
arranged stages are monitored separately and the
relations in each stage are investigated (Demirci et
al., 2000). Simulation project adapting
the general
model to the specific problem situation plays
essentialrole(Neumann,2011).
Thisstudy ispreparedinordertodetermine the
handling capacity and usability of BOTAŞ Ceyhan
MarineTerminal.Furthermorethefollowingaspects
of the BOTAŞ Ceyhan Marine Terminal are
investigated: number of incoming vessels, queue
valuesfor
berthingintheport,vesselwaitingtimes
for berthing, usability values of the ports, queue
valuesfortugboatservice,thetime the vessels wait
forgettingtugboatservice,totaltugboatactivity.Stay
inport durations, frequency of arriving to the port,
stormydaysandthetugboatservicerenderedarethe
most
critical criteria of this study. Accordingly
AWESIMsimulationmodelingapplicationisusedin
thepresentstudy.
3.1 AWESIM
AWESIM refers to the simulation language for
problem solving. It may be used in courses,
professional life, industrial engineering, managerial
works, operational works and computer sciences.
AWESIM is a simulation language for
alternative
modeling. High level understanding and compiling
of AWESIM lead to an increase in worldwide
simulationandmodelingutilization(Pritsker,1996).
An AWESIM project consists of one or more
scenarios, each of which represents a particular
system alternative. A scenario contains component
parts. AWESIM incorporates the Visual SLAM
modeling methodology. The
basic component of a
VisualSLAMmodelisa network, or flow diagram,
which graphically portrays the flow of entities
(people, parts or information, for example) through
thesystem. A VisualSLAM network ismade up of
ʺnodesʺatwhichprocessingisperformed,connected
byʺactivitiesʺ which define the routing
of entities
and the time required to perform operations
(O’Reilly and Lilegdon, 1999). Symbols frequently
used in AWESIM are shown in Table1 along with
theirdescriptions.
Thecreatenodecreatesanewentitywithinthe
networkatintervalsdefinedbyTBC(TimeBetween
Creations)andcansavethearrival
timeasanentity
attribute. TF; time the first entityenters the system,
MA; variable used to maintain mark time, MC;
maximum number of entities to create. Activity
determinesthetimeoftheactivities.Thedurationof
an activity is the time delay experienced by the
activity. DUR; specifies the duration
of the activity
using either explicit time or a distribution,
CONDITION/PROBABILITY; specifies under what
circumstance/probabilityaparticularbranchwillbe
traversed by an entity,N;represents the number
ofparallel identicalserversiftheactivityrepresents
servers,A;istheactivitynumberwithinthemodel.
A Queue node
is location in the network where
entitieswaitforservice.Whenanentityarrivesata
Queuenode,itsdispositiondependsonthestatusof
the service activity that follows the Queue node. If
theserverisidle,theentitypassesthroughtheQueue
nodeandgoesimmediatelyintotheservice
activity.
Ifallserversarebusy,theentitywaitsinafileatthe
Queue node until a server becomes available. The
145
sequenceofoccurrencesinqueueisevaluatedinthe
prioritynodeoutsidethenetwork.FIFO(FirstInFirst
Out)isthedefaultpriorityforfiles.IQ;initialnumber
in queue, QC; capacity of queue, IFL; file number.
The Terminate node is used to delete entities from
thenetwork.Itmaybeusedtospecifythenumberof
enti
ties to be processed on a simulation run. This
number of entities is referred to as a termination
count or TC value. When multiple terminate nodes
are employed, the first termination count reached
ends the simulation run. Assign node used as a
method to assign va
lues to entity attributes as they
passthroughthenode.Alsoitcanbeusedtoassign
valuestosystemvariablesateacharrivalofanentity
to the node. VAR defines global or entity variable.
Thetype of Value(expression) must agreewith the
variable being assigned. A ma
ximum of M
emanatingactivitiesareinitiated.Theresourceblock
identifiesaresourcenameorlabel,RNUM;resource
number, RLBL; the initial resource capacity, CAP;
number of units of the resource initially available,
IFL; file to poll for entities waiting for a resource.
Await node used to store entities waiting for UR
unitsofresourcetobeav
ailableorgatetoopen(use
resource or gate label names). Arriving entities are
placedinfileIFL.QCspecifiesthequeuingcapacity
of the node.Rule specifies the resource allocation
rule. M specifies the maximum branches leaving
entitiescantake.Freenodeusedtoreleaseresources
previously allocat
ed at an AWAIT node when an
entityarrivesatthenode.Everyentityarrivingata
FREE node releases UF units of RES resource. A
maximumofMemanatingactivitiescanbeinitiated
from the node. The alter node is used to change to
capacityofresourcetypeRESbyCCunits.CCcanbe
constant or an expression. If CC is positive, the
number of av
ailable units is increased. If CC is
negative, the capacity is decreased (Pritsker and
OʹReilly,1999;Pritskeretal.,1989).
3.2 TechnicalSpecificationsofBOTAŞTerminal
BOTAŞCeyhanMarineTerminal,thet
erminationof
IraqTurkeyCrudeOilPipeline,locatedwithinthe
district borders of Ceyhan at 36°51,9’N 35°56,7’E is
discussed in the present study. BOTAŞ Terminal is
ownedandoperated by BOTAŞ. It is in the BOTAŞ
Ceyhan Port Authority management area. The first
loadingoperationofthistermi
nalwasperformedin
1977. It consists of 4 quays. The loading arms in
loadingunloading facilities are hydraulic system
operated via the crane tower located on the quay.
Quay1andquay2aresuitableforberthingvessels
with 100.000300.000 deadweight tons and quay 3
and quay are suit
able for berthing vessels with
30.000150.000deadweighttons(Figure1).
Figure1. BOTAŞ CeyhanMarine Terminalquay
dimensions
Table1.SymbolsfrequentlyusedinAWESIM
__________________________________________________________________________________________________
__________________________________________________________________________________________________
SymbolNodeNames Description
__________________________________________________________________________________________________
Create Createsentities
Activity Specifiesdelay(operation)timeandentityrouting
Queue Holdsentitiesuntilaserverbecomesavailable
Terminate Terminatestheroutingofentities
Assign Assignsvaluestoattributesorglobalsystemvariables
ResourceResourcedefinitionandinitialcapacity
Await Holdsentitiesuntilaresourceisavailableoragateisopen
Free Makesresourcesavailableforreallocation
AlterChangesthecapacityofaresource
__________________________________________________________________________________________________
146
Table2.CapacitiesofBOTAŞCeyhanMarineTerminalloadingarms(BOTAŞ,2005)
__________________________________________________________________________________________________
Port Numbers Diameterofthe Loadingrate Maximum Maximum Minimum Maximum
number ofarm manifoldm3/hours Draft(meter) LOA(meter) LOA(meter) Dwt.Tons
__________________________________________________________________________________________________
14 20ʺ‐18ʺ‐16ʺ4x500023 355 200 300000
24 20ʺ‐18ʺ‐16ʺ4x500023 355 200 300000
34 16ʺ‐14ʺ‐12ʺ4x250018 300 168 150000
4416ʺ‐14ʺ‐12ʺ4x250017300168150000
__________________________________________________________________________________________________
4 AWESIMSIMULATIONAPPLICATIONS
AWESIM simulation network model is used in the
presentstudyforCeyha
nMarineTerminal.Thereare
4quaysinthismodel.Vesselsarriveattheportwith
4differentscenarioswithintervalsof1224hour,12
36 hour, 2436 hour and 2448 hour. It is assumed
tha
t same amount of vessels arrive at these four
quays. Waiting times of the vessels at the terminal
are calculated as 24 hours minimum 64 hours
maximumforquays1and2takingintoaccountthe
vessel dimensions, ballast capacities, coast loading
rateanddocumentprocessingpriortoandfollowing
the operation. On the other hand, tankers with
smaller dimensions compared to quays 1 and 2
berthsatquay3andquay4.Therefore,wait
ingtimes
of the vessels at the terminal are calculated as 16
hoursminimum64hoursmaximumforquays3and
4. Tugboat and pilotage service are required for
berthing and unberthing. Tugboat and pilot
age
servicecannot be rendered for other vessel beforea
vesselberthingorunberthing.Tugboatandpilotage
serviceareconsideredasonehoureachforberthing
and unberthing operations. This port is unable to
offer tugboat and pilotage service on days with
stormyweather(Uğurlu,2006).Itisknowntha
tthere
are 30 days with stormy weather in one year for
CeyhanMarineTerminal(BOTAŞ,2005).
This simulation program is assessed for each
scenario over 8760 hours in total, i.e. 365 days.
Accordingly the number of vessels arriving at the
port,port queue volume,wait
ingtime for berthing,
waiting time for tugboat and pilotage services,
operability of tugboat and pilotage services and
operabilityofberthsareevaluated.
4.1 Scenario1
Scenario1issimulatedas vessel arrivingatBOTAŞ
CeyhanMarineTerminalin12to24hours(Figure2).
According to simulation outputs, it is observed
tha
t486vesselsarrivedintotalbeing118atquay1,
114atquay2,140atquay3and114atquay4.Any
vessel arriving at the berthing is able to commence
berthingafteranaveragewaitingtimeof12minutes.
Itisseentha
t1queueisformedforfourquays.The
quaysoperate at2,449 efficiency on the In terms of
tugboat service, any vessel arriving at the terminal
receives the tugboat service after an scale of 4; in
otherwordswith61%efficiency.
Averagewaitingtimeof13minutesandthereisa
queue of 2 vessels for such tugboa
t service. The
activityofthetugboatsis11%intotal(Table3).
Figure2. BOTA Ş Ceyhan Marine Terminal Scenario 1
simulationflowchart(1224hours)
4.2 Scenario2
Scenario2issimulatedas vessel arrivingatBOTAŞ
CeyhanMarineTerminalin12to36hours(Figure3).
According to simulation outputs, it is observed
that372vesselsarrivedintotalbeing94atquay1,90
atquay2,97atquay3and91atquay4.Anyvessel
arriving at the berth is ab
le to commence berthing
afteranaveragewaitingtimeof11minutes.Itisseen
that 1 queue is formed for four quays. The quays
operateat1,885efficiencyonthescaleof4;inother
words with 47% efficiency. In terms of tugboa
t
service, any vessel arriving at the terminal receives
thetugboatserviceafteran averagewaitingtimeof
10minutesandthereisaqueueof2vesselsforsuch
tugboatservice.Theactivityofthetugboatsis8,5%
intotal(Table4).
147
Figure3. BOTA Ş Ceyhan Marine Terminal Scenario 2
simulationflowchart(1236hours)
4.3 Scenario3
Scenario3issimulatedas vessel arrivingatBOTAŞ
CeyhanMarineTerminalin24to34hours(Figure4).
According to simulation outputs, it is observed
that294vesselsarrivedintotalbeing73atquay1,71
atquay2,80atquay3and70atquay4.Anyvessel
arriving at the berth is ab
le to commence berthing
afteranaveragewaitingtimeof8minutes.Itisseen
that 1 queue is formed for four quays. The quays
operateat1,466efficiencyonthescaleof4;inother
words with 36,6 % efficiency. In terms of tugboa
t
service, any vessel arriving at the terminal receives
thetugboatserviceafteran averagewaitingtimeof
13minutesandthereisaqueueof2vesselsforsuch
tugboatservice.Theactivityofthetugboatsis6,7%
intotal(Table5).
Figure4. BOTA Ş Ceyhan Marine Terminal Scenario 3
simulationflowchart(2436hours)
4.4 Scenario4
Scenario4issimulatedas vessel arrivingatBOTAŞ
CeyhanMarineTerminalin24to48hours(Figure5).
According to simulation outputs, it is observed
that247vesselsarrivedintotalbeing63atquay1,57
atquay2,69atquay3and58atquay4.Anyvessel
arriving at the berth is ab
le to commence berthing
afteranaveragewaitingtimeof11minutes.Itisseen
that 1 queue is formed for four quays. The quays
operateat1,251efficiencyonthescaleof4;inother
words with 31,2 % efficiency. In terms of tugboa
t
service, any vessel arriving at the terminal receives
thetugboatserviceafteranaveragewaitingtimeof9
minutes and there is a queue of 1 vessel for such
tugboatservice.Theactivityofthetugboatsis5,7%
intotal(Table6).
148
Figure5.BOTAŞCeyhanMarineTerminalScenario4simulationflowchart(2448hours)
Table3.BOTAŞCeyhanMarineTerminalScenario1simulationoutputs(1224hours)
__________________________________________________________________________________________________
StatisticsforVesselsBasedonObservation
__________________________________________________________________________________________________
Quay MeanValue StandardDeviation NumberofObservations MinimumValue MaximumValue
Number (hours)(hours)(pcs)(hours)(hours)
__________________________________________________________________________________________________
Quay1 47,35011,031 118 28,282 69,093
Quay2 44,98211,798 114 26,350 68,383
Quay3 41,37212,737 140 20,648 66,776
Quay4 43,57113,61011418,08766,974
__________________________________________________________________________________________________
FileStatistics
__________________________________________________________________________________________________
File Label/Type AverageLength StandardDeviationMaximumQueue AverageWaitingTime
Number(pcs)(pcs)(pcs)(hours)
__________________________________________________________________________________________________
1Quay 0,010 0,101 1 0,186
2Tugboat0,0120,11220,217
__________________________________________________________________________________________________
ResourceStatistics
__________________________________________________________________________________________________
Resource ResourceLabel AverageUtilization StandardDeviationCurrentUtilizationMaximumUtilization
Number(pcs)(pcs)(pcs)(pcs)
__________________________________________________________________________________________________
1Quay 2,449 0,758 2 4
2Tugboat0,1110,31401
__________________________________________________________________________________________________
ResourceNumber CurrentAvailable AverageAvailable MinimumAvailable MaximumAvailable
__________________________________________________________________________________________________
1 4 1,551 0 4
210,809‐11
__________________________________________________________________________________________________
Table4.BOTAŞCeyhanMarineTerminalScenario2simulationoutputs(1236hours)
__________________________________________________________________________________________________
StatisticsforVesselsBasedonObservation
__________________________________________________________________________________________________
Quay MeanValue StandardDeviation NumberofObservations MinimumValue MaximumValue
Number (hours)(hours)(pcs)(hours)(hours)
__________________________________________________________________________________________________
Quay1 44,78711,496 94 26,158 66,861
Quay2 47,56810,088 90 28,282 65,613
Quay3 43,68913,801 97 19,291 65,983
Quay4 42,12113,8459119,35865,808
__________________________________________________________________________________________________
FileStatistics
__________________________________________________________________________________________________
File Label/Type AverageLength StandardDeviationMaximumQueue AverageWaitingTime
Number(pcs)(pcs)(pcs)(hours)
__________________________________________________________________________________________________
1Quay 0,008 0,089 1 0,187
2Tugboat0,0070,08520,159
__________________________________________________________________________________________________
ResourceStatistics
__________________________________________________________________________________________________
Resource ResourceLabel AverageUtilization StandardDeviationCurrentUtilizationMaximumUtilization
Number(pcs)(pcs)(pcs)(pcs)
__________________________________________________________________________________________________
1Quay 1,885 0,709 2 4
2Tugboat0,0850,27901
__________________________________________________________________________________________________
ResourceNumber CurrentAvailable AverageAvailable MinimumAvailable MaximumAvailable
__________________________________________________________________________________________________
1 4 2,115 0 4
210,840‐11
__________________________________________________________________________________________________
149
Table5.BOTAŞCeyhanMarineTerminalScenario3simulationoutputs(2436hours)
__________________________________________________________________________________________________
StatisticsforVesselsBasedonObservation
__________________________________________________________________________________________________
Quay MeanValue StandardDeviation NumberofObservations MinimumValue MaximumValue
Number (hours)(hours)(pcs)(hours)(hours)
__________________________________________________________________________________________________
Quay1 45,73811,627 73 26,072 65,840
Quay2 46,35211,873 71 26,197 67,786
Quay3 41,89313,231 80 20,744 65,858
Quay4 41,33112,6887020,09466,040
__________________________________________________________________________________________________
FileStatistics
__________________________________________________________________________________________________
File Label/Type AverageLength StandardDeviationMaximumQueue AverageWaitingTime
Number(pcs)(pcs)(pcs)(hours)
__________________________________________________________________________________________________
1Quay 0,005 0,068 1 0,136
2Tugboat0,0070,08920,223
__________________________________________________________________________________________________
ResourceStatistics
__________________________________________________________________________________________________
Resource ResourceLabel AverageUtilization StandardDeviationCurrentUtilizationMaximumUtilization
Number(pcs)(pcs)(pcs)(pcs)
__________________________________________________________________________________________________
1Quay 1,466 0,573 1 3
2Tugboat0,0670,25001
__________________________________________________________________________________________________
ResourceNumber CurrentAvailable AverageAvailable MinimumAvailable MaximumAvailable
__________________________________________________________________________________________________
1 4 2,534 1 4
210,852‐11
__________________________________________________________________________________________________
Table6.BOTAŞCeyhanMarineTerminalScenario4simulationoutputs(2448hours)
__________________________________________________________________________________________________
StatisticsforVesselsBasedonObservation
__________________________________________________________________________________________________
Quay MeanValue StandardDeviation NumberofObservations MinimumValue MaximumValue
Number (hours)(hours)(pcs)(hours)(hours)
__________________________________________________________________________________________________
Quay1 45,49011,029 63 27,888 68,800
Quay2 46,16110,818 57 29,986 67,528
Quay3 44,07913,514 69 18,614 65,948
Quay4 41,70713,7105818,08766,680
__________________________________________________________________________________________________
FileStatistics
__________________________________________________________________________________________________
File Label/Type AverageLength StandardDeviationMaximumQueue AverageWaitingTime
Number(pcs)(pcs)(pcs)(hours)
__________________________________________________________________________________________________
1Quay 0,005 0,071 1 0,180
2Tugboat0,0040,06610,155
__________________________________________________________________________________________________
ResourceStatistics
__________________________________________________________________________________________________
Resource ResourceLabel AverageUtilization StandardDeviationCurrentUtilizationMaximumUtilization
Number(pcs)(pcs)(pcs)(pcs)
__________________________________________________________________________________________________
1Quay 1,251 0,580 2 3
2Tugboat0,0570,23101
__________________________________________________________________________________________________
ResourceNumber CurrentAvailable AverageAvailable MinimumAvailable MaximumAvailable
__________________________________________________________________________________________________
1 4 2,749 1 4
210,867‐11
__________________________________________________________________________________________________
5 DISCUSSIONANDRESULTS
BOTAŞ Ceyhan Marine Terminal is investigated
under 2 conditions since the tonnage of the vessels
berthing at quays12 differ from the tonnage of the
vesselsberthingatquays34.Therearefourdifferent
vessel arriving values each being 232, 184, 144, 120
vesselsatquays1and3and254,188,150,127vessels
at quays 3 and 4 according to four invest
igated
scenarios and based on the arrival frequency of the
vessels. It is observed that maximum 232 and
minimum120vesselswillarriveatquays1and2and
maximum254andminimum127vesselswillarriveat
quays 3 and 4. When the four scenarios are
invest
igatedintermsofqueuevolumeoccurringdue
tosetbacksatmooringsandtugboatpilotage service
takingintoaccountthevaluesofScenario1,Scenario
2,Scenario3andScenario4,itisseenthataqueueof
1vesselforallfoursituations isformed.Accordingly,
itcanbesaidtha
tthereshallbeaqueueattheportin
everycase.Thequeuevolumetobeformedshallbe1
maximum based on the arrival frequency of the
vessels. The fact that vessels arriving at the port
encountering wait
ing times such as 12 minutes, 11
minutes, 8 minutes, 11 minutes based on the 4
scenarios for berthing is in question. It is observed
thattheoperabilityoftheportva ries61%to31%.The
waiting times occurring in the port due to tugboat
pilotageservicesetbacksarerespectively13minutes,
10minutes, 13 minutes and10minutes.Anyvessel
arriving at the port will be required to wait for 13
minutes ma
ximum and 8 minutes minimum. The
tugboatactivityvaries11%to5%.
Itisseenthatamaximumqueueof1willformfor
BOTAŞ Ceyha
n Marine Terminal regardless of the
vessel arrival frequency in four scenarios and the
queuevolumeisnotalongvalue.Itisseenthatthe
150
vesselsarrivingwaitforashortperiodoftimesuchas
12 minutes maximum for receiving berthing service.
Furthermore, it can be said that tugboatpilotage
serviceshallnotbedisruptedforalongperiodoftime
andaccordinglytheexistingtugboatsshallbeableto
rendertheterminalservice.
It is observed that maximum 486 vessels and
minimum247vessels shall arrive atBOTAŞ Ceyhan
MarineTerminalintotal.Scenario4valuesshowthe
minimum number of vessels that shall berth at
BOTAŞ Ceyhan Marine Terminal within 1 year.
AccordingtoScenario4120vesselsberthatquays1
and2intotaland127vesselsberthatquays3and4 in
total.Quays1and2exportminimum12.000.000ton
and maximum 36.000.000 ton of crude oil in 1 year.
AccordingtoScenario4,minimum3.810.000tonand
maximum19.050.000tonofcrudeoilisexportedfrom
quays
3and4exportin1year.AccordingtoScenario
4 value, it is possible to export minimum 15.810.000
ton and maximum 55.050.000 ton crude petrol from
BOTAŞCeyhanMarineTerminalin1year.
Scenario 1 is the maximum number of vessels
arrivingatBOTAŞCeyhanMarineTerminalin1
year.
TakingintoaccountthefactthataccordingtoScenario
1,232vesselsarriveatquays1and2in1yearintotal,
it can be said that it is possible to export minimum
23.200.000tonandmaximum69.600.000tonofcrude
oilfromtheterminal.Takingintoaccountthe
factthat
accordingtoScenario1,254vesselsarriveatquays3
and4in1yearintotal,itcanbesaidthatminimum
7.620.000 ton and maximum 37.100.000 ton of crude
oilshallbeexported.AccordingtoScenario1values,
takingintoaccountthefourquayaltogether, it
shall
be possible to export minimum 30.800.000 ton and
maximum106.700.000tonofcrudeoilin1year.
6 CONCLUSIONS
IraqTurkey crude oil pipeline is in operation for 36
years. It consists of two pipelines. . According to
BOTAŞ(2008)data,BOTAŞCeyhanMarineTerminal
has a handling capacity of
70.000.000 ton provided
thatitisoperatedundernormalconditions.Themost
significant obstacle of this line is war and political
uncertainties. There were setbacks on IraqTurkey
pipeline from time to time due to political
uncertainties.According to result of AWESIM
simulation modeling, it is possible to export
minimum
15.810.000 ton and maximum 106.700.000
tonofcrudeoilviaIraqTurkeycrudeoilpipeline.It
is seen in the four investigated scenarios that there
shallnotbeanyintensecongestionatBOTAŞCeyhan
Portintermsofberthsandtugboatpilotageservices
andBOTAŞCeyhanMarineTerminalshallmeetthis
transportation capacity provided that there is no
arrestordecelerationinthepipeline.Inthisregard,
themostsignificantsteptotakeforIraqTurkeycrude
oilpipelineistoeliminatethenegativeaspectsonthe
pipelinesuchaspoliticaluncertainties.Ifthepolitical
uncertaintiesareremovedonthepipeline
Therewill
beasubstantialincreaseinexportedcrudeoilvolume
inİskenderun Gulf with BOTAŞ Ceyhan Marine
TerminalandtheshiptrafficinİskenderunGulfshall
increasesubstantially.
In this study it is seen that AWESIM simulation
model can be effectively used for determining port
handlingcapacity,efficiencyanalysisand
queuesize.
Therefore AWESIM simulation model can be used
easily for optimizing of port operation in container,
bulkandliquidcargoterminals.
REFERENCES
Ali, A.2008.RoleandImportance of Simulator Instructor,
TransNav‐InternationalJournalonMarineNavigation
andSafetyofSeaTransportation,2,4,423427.
Azadeh, A.E. and Farahani, K. J. 1998. Successful
Implementation of Computer Simulation in Industrial
Plants.Flooded(steel)Journal,46.
BOTAŞ. 2005. Pipeline and Marine Terminal
Description.
Ankara.
BOTAŞ. 2008. IraqTurkey Crude Oil Pipeline [Online].
Available: http://www.botas.gov.tr/index.asp [Accessed
05.11.2012]
Çubuk,K.&Cansız,F.2005.TheEnergySituationbetween
Transport systems in Turkey. 24. Energy Efficiency
Week,ʹʹEnergyEfficiencyʹʹConference,Ankara.
Demirci, E., Araz, T. & Köse, E. 2000. Trabzon Port
SimulationModelJournal
ofIndustrialEngineering
11,214.
Demirci, E. 2003. Simulation Modelling and Analysis of a
PortInvestment.Simulation.79(2),93105.
Hassan, S. A. 1993. Port activity simulation: An overview.
SimulationDigest.23(2),1736.
Hayuth,Y.,M.A.Pollatschek,andY.Roll. 1994.Buildinga
portsimulator.
Simulation.63(3),17989.
Köse,E.,Başar,E.,Demirci,E.,Güneroǧlu,A.&Erkebay,Ş.
2003. Simulation of marine traffic in Istanbul Strait.
SimulationModellingPracticeandTheory,11,597608.
Neumann, T., 2011. A Simulation Environment for
Modelling and Analysis of the Distribution of Shore
ObservatoryStations
‐PreliminaryResults.TransNav‐
International Journal on Marine Navigation and Safety
ofSeaTransportation,5,4,555560.
O’Reilly, J. J. & Lilegdon, W. R. 1999. Inroduction to
AWESIM. Proceedings of the 1999 Winter Simulation
Conference.Phoenix.
Pritsker,A.A.B.1986.IntroductiontoSimulationandSlam
II,Westlafayette,SystemsPublishing
Corporation.
Pritsker,A.A.B.1996.IntroductiontoSimulationandSlam
II,Westlafayette,SystemsPublishingCorporation.
Pritsker, A. A. B. & OʹREILLY, J. J. 1999. Simulation with
Visual SLAM and AweSim, New York, John
Wiley&Sons.
Pritsker,A.A.B.,Sigal,C.E. &Hammesfahr,R.D.J.1989.
SLAM II
Network Models for Decision Support, New
Jersey,PrenticeHall.
Ramani,K.V.1996.AnInteractiveSimulationModelforthe
LogisticsPlanningofContainerOperationsinSeaports.
Simulation,66,291300.
Soylu,M.S.2000.DoguAkdeniz’inStratejikYapısınaBakü
Ceyhan Petrol Boru Hattının Etkilerinin
Degerlendirilmesi.MsC,İ
stanbulÜniversitesi.
Teo, Y. M. 1993. PortSim: Simulation and Animation of
Contanier Port. Proc. of the Summer Simulation
Conference.California.
TUBİTAK.2003.TheScientificandTechnologicalResearch
Council of Turkey, Panel on Transport and Tourism.
Vision2023.Ankara.
Uğurlu, Ö. 2006. Simulation Of BTC And BOTAŞ Marine
Terminals.MSc,
KaradenizTechnicalUniversity
Yeo,G.,Roe,M.&Soak,S.2007.EvaluationoftheMarine
Traffic Congestion of North Harbor in Busan Port.
Journal of Waterway, Port, Coastal, and Ocean
Engineering,133,8793.