272
Scientific workshop employed to solve the
problemmakesuseofvarioustools,i.e.ofdifferential
geometry, marine geodesy (marine navigation),
analysisofmeasurementerror,approximationtheory
and problems of modelling and computational
complexity, mathematical and descriptive statistics,
mathematicalcartography.Geometricalproblemsare
importantaspectofthetestedmodelswhichare
used
asthebasisofcalculationsandsolutionsimplemented
in contemporary navigational devices and modern
electronicchartsystems.
Thispaperwaswrittenwithavarietyofreadersin
mind, ranging from practising navigators to
theoretical analysts. It was also the author’s goal to
present current and uniform approaches to sailing
calculationshighlightingrecentdevelopments.Much
insight may be gained by considering the examples.
Thealgorithmsappliedfornavigationalpurposes,in
particular in ECDIS, should inform the user on
actuallyusedmathematicalmodelanditslimitations.
The shortestdistance (geodesics) between the points
depends on the type of metric we use on
the
considered surface in general navigation. It is also
important to know how the distance between two
pointsonconsideredstructureisdetermined.
Anattempttocalculatetheexactdistancefromthe
equatorto the polewasjust an excusetolook more
closely at the methods of determining the
meridian
arc distance and the navigation calculations in
general.
The navigation based on geodesic lines and
connected software of the ship’s devices (electronic
chart,positioningandsteeringsystems)givesastrong
argument to research and use geodesic‐based
methods for calculations instead of the loxodromic
trajectories in general. The theory is
developing as
well what may be found in the books on geometry
andtopology.Thisshouldmotivateustodiscussthe
subjectandresearchthecomponentsofthealgorithm
ofcalculationsfornavigationalpurposes.
Algorithmsforthecomputationofgeodesicsonan
ellipsoid of revolution are given. These provide
accurate,
robust,and fast solutions to the direct and
inversegeodesicproblemsandtheyallowdifferential
and integral properties of geodesics to be computed
[Karney,2011]and[Karney,2013].
REFERENCES
Adams, O.S., 1921. Latitude Developments Connected with
Geodesy and Cartography. Washington, United States
CoastandGeodeticSurvey,SpecialPublicationNo.67,
p.132.
AMN, 1987. Admiralty Manual of Navigation, Volume 1,
General navigation, Coastal Navigation and Pilotage,
Ministry of Defence (Navy), London, The Stationery
Office.
Banachowicz, A., 1996. Elementy
geometryczne elipsoidy
ziemskiej (in Polish). Prace Wydziału Nawigacyjnego
AkademiiMorskiejwGdyni,No. 18,p.17‐31,Gdynia.
Bomford,G.,1985.Geodesy.OxfordUniversityPress.
Bowditch,N.,2002.AmericanPracticalNavigator,Pub.No.9,
The Bicentennial Edition, National Imagery and
MappingAgency.
Bowring, B.R., 1983. The Geodesic Inverse Problem,
Bulletin
Geodesique,Vol.57,p.109(Correction,Vol.58,p.543).
Bowring, B.R., 1984. The direct and inverse solutio ns for the
great elliptic and line on the reference ellipsoid, Bulletin
Geodesique,58,p.101‐108.
Bowring, B.R., 1985. The geometry of Loxodrome on the
Ellipsoid,TheCanadianSurveyor,Vol.
39,No.3.
Dana, P.H., 1994. WGS‐84 Ellipsoidal Parameters. National
GeospatialIntelligenceCollege,9/1/94.
Deakin,R.E.,2012.GreatEllipticArcDistance.LectureNotes.
School of Mathematical & Geospatial Science, RNIT
University,Melbourne,Australia,January.
Deakin,R.E.,Hunter,M.N.,2010.GeometricGeodesy,PartA.
School of Mathematical &
Geospatial Science, RNIT
University,Melbourne,Australia,January.
Dresner,S.,1971.UnitsofMeasurement.JohnWiley&Sons
Ltd.May6.
Earle, M.A., 2000. Vector Solution for Navigation on a Great
Ellipse,The JournalofNavigation,Vol.53,No.3.,p.473‐
481.
Earle, M.A., 2011. Accurate Harmonic Series for Inverse
and
Direct Solutions for Great Ellipse. The Journal of
Navigation,Vol.64,No.3,July,p.557‐570.
Karney,C.F.F.,2011.Geodesicsonanellipsoidofrevolution.SRI
International, Princeton, NJ, USA, 7 February, p. 29‐
http://arxiv.org/pdf/1102.1215v1.pdf.
Karney, C.F.F., 2013. Algorithms for geodesics. Journal of
Geodesy,January,Volume87,
Issue1,p.43‐55.
Kawase,K.,2011.AGeneralFormulaforCalculatingMeridian
ArcLengthanditsApplicationtoCoordinateConversionin
the Gauss‐Krüger Projection. Bulletin of the Geospatial
InformationAuthorityofJapan,No.59,pp.1–13.
Michon, G.P., 2012. Perimeter of an Ellipse. Final Answers.
www.numericana.com/answer/ellipse.htm
Pallikaris,
A., Latsas, G., 2009. New Algorithm for Great
EllipticSailing(GES),TheJournalofNavigation,Vol.62,
p.493‐507.
Pallikaris,A.,Tsoulos,L.,Paradissis,D.,2009.Newmeridian
arc formulas for sailing calculations in GIS, International
HydrographicReview.
Pearson,F.,II,1990.MapProjection:TheoryandApplications.
CRC
Press,BocaRaton,AnnArbor,London,Tokyo.
Phythian,J.E.,Williams,R.,1985.Cubicsplineapproximation
to an integral function. Bulletin of the Institute of
MathematicsandItsApplications,No.21,p.130‐131.
Snyder,J.P.,1987. Map Projections:A Working Manual.U.S.
GeologicalSurveyProfessionalPaper1395.
Torge, W.,
2001. Geodesy. Third completely revised and
extendededition.WalterdeGruyter,Berlin,NewYork.
Veis, G., 1992. Advanced Geodesy. Chapter 3. National
TechnicalUniversityofAthens(NTUA),p.13‐15.
Walwyn,P.R.,1999.TheGreatellipsesolutionfordistancesand
headings to steer between waypoints, The Journal of
Navigation,
Vol.52,p.421‐424.
Weintrit,A.2009.TheElectronicChartDisplayandInformation
System (ECDIS). An Operational Handbook. A Balkema
Book.CRCPress,Taylor&FrancisGroup,BocaRaton–
London‐NewYork‐Leiden,p.1101.
Weintrit, A., 2010. Jednostki miar wczoraj i dziś. Przegląd
systemów miar
i wag na lądzie i na morzu (in Polish)
AkademiaMorskawGdyni,Gdynia.
Weintrit,A.,Kopacz,P.,2011.ANovelApproachtoLoxodrome
(RhumbLine), Orthodrome(GreatCircle)andGeodesicLine
in ECDIS and Navigation in General. TransNav‐
International Journal on Marine Navigation and Safety
ofSeaTransportation,
Vol.5,No.4,p.507‐517.
Weintrit,A.,Kopacz,P.,2012.OnComputationalAlgorithms
Implemented in Marine Navigation Electronic Devices and
Systems. Annual of Navigation, No 19/2012, Part 2,
Gdynia,p.171‐182.
Williams, E. 2002. Navigation on the spheroidal Earth,
http://williams.best.vwh.net/ellipsoid/ellipsoid.html.
Williams, R., 1996. The Great Ellipse
on the surface of the
spheroid, The Journal of Navigation, Vol. 49, No. 2, p.
229‐234.