211
1 INTRODUCTION
Adynamicalsystemiscalledpositiveifitstrajectory
starting from any nonnegative initial states remains
forever in the positive orthant for all nonnegative
inputs. An overview of state of the art in positive
systemstheoryisgiveninmonographs[10,16].The
problems of stability and control
of system with
delayshavebeenconsideredin[3,11,12,13,25].The
stabilityandthe robust stabilityof positive discrete
time linear systems without delays and with delays
havebeeninvestigatedin[110,1426].
The stability of positive continuoustime linear
systemswithdelayshavebeen
addressedin[17].and
the stability of positive fractional systems with one
delayin[22].
In this paper new necessary and sufficient
conditions for asymptotic stability of positive
fractionalcontinuoustimelinearsystemswithdelays
willbepresented.Itwillbeshownthattheasymptotic
stabilityof positive fractional continuoustime linear
systemsisindependentoftheirdelaysandchecking
ofasymptoticstabilityofthesystemwithdelayscan
be reduced to checking of the stability of positive
systemswithoutdelays.
Thepaperisorganizedasfollows.Insection2the
fractional continuoustime linear systems and their
solutions are recalled. Necessary
and sufficient
conditionsforthepositivityofthisclassoffractional
systemswithdelaysaregiveninsection3.Themain
resultofthepaperispresentedinsection4,wherethe
necessaryandsufficientconditionsfortheasymptotic
stabilityofthepositivefractionallinearsystemswith
delaysareestablished.Concluding
remarksaregiven
insection5.
Thefollowingnotationwillbeused:
‐theset
of real numbers,
Z
‐ the set of nonnegative
integers,
mn
‐ the set of
mn
real matrices,
mn
‐thesetof
mn
matrices with nonnegative
entries and
1
nn
, .
n
I the
nn
identity
matrix.Thestrictlypositivevectorxwithallpositive
componentswillbedenotedbyx>0.
Stability Tests of Positive Fractional Continuous-time
Linear Systems with Delays
T.Kaczorek
FacultyofElectricalEngineering,BialystokUniversityofTechnology,Poland
ABSTRACT:Necessaryandsufficientconditionsfortheasymptoticstabilityofpositivefractionalcontinuous
timelinearsystemswithmanydelaysareestablished.Itisshownthat:
1)theasymptoticstabilityofthepositivefractionalsystemisindependentoftheirdelays,
2) the checking
of the asymptotic stability of the positive fractional systems with delays can be reduced to
checkingoftheasymptoticstabilityofpositivestandardlinearsystemswithoutdelays.
http://www.transnav.eu
the International Journal
on Marine Navigation
and Safety of Sea Transportation
Volume 7
Number 2
June 2013
DOI:10.12716/1001.07.02.08
212
2 FRACTIONALCONTINUOUSTIMELINEAR
SYSTEMSANDTHEIRSOLUTIONS
InthispapertheCaputodefinitionwillbeused
,...}2,1{1
,
)(
)(
1
)(
0
1
)(
Nnn
d
t
f
n
tf
dt
d
t
n
n
(2.1)
where
is the order of fractional derivative,
n
n
n
d
fd
f
)(
)(
)(
and
0
1
)( dttex
xt
is the
gammafunction.
Consider the continuoustime fractional linear
systemwithdelays
10
),()()()(
1
0
tBudtxAtxAtx
dt
d
q
k
kk
(2.2)
where
n
tx )( is the state vector,
m
tu )( is
the input vector and
,
nn
k
A
mn
B
, dk is a
delay
qk ,...,1
.
Theinitialconditionsfor(2.2)havetheform
)()(
0
txtx for ]0,[ dt ,
k
k
dd max (2.3)
Thesolutiontotheequation(2.2)with(2.3)canbe
foundbytheuseofthestepmethod[17].
For
1q and
dt 0
the solution has the
form[17]
t
dBudxAtxttx
0
0100
)]()()[()0()()(
(2.4)
where
0
0
0
)1(
)(
k
k
k
k
tA
t
,
0
1)1(
0
])1[(
)(
k
k
k
k
tA
t
(2.5)
Knowing the state vector
)(tx for dt
0 in
a similar way we can find the state vector for
dtd 2 andnextfor dtd 32
,
3 POSITIVEFRACTIONALCONTINUOUSTIME
SYSTEMSWITHDELAYS
Definition3.1. The fractional continuoustime linear
systems with delays (2.2) is called positive if
n
tx
)( , 0t foranyinitialconditions
n
tx
)(
0
for
]0,[ dt
(3.1)
andallinputvectors
n
tu
)( , 0t .
A real matrix
nn
A
is called the Metzler
matrixifitsoffdiagonalentriesarenonnegative.
Let
n
M bethesetof
nn
Metzlermatrices.
Theorem 3.1. The fractional continuoustime linear
systems(2.2)for
10
ispositiveifandonlyif
n
MA
0
,
nn
k
A
,
qk ,...,1
;
mn
B
. (3.2)
Proof.Itiswellknown[17]that
nn
)(
0
and
nn
)(
if and only if
n
MA
0
. From (2.4) it
follows that
n
tx
)( , 0t if
nn
k
A
,
qk ,...,1
;
mn
B
and
n
tu
)( for 0t .
Thenecessitycanbeshowninsimilarwayasin[17].□
4 ASYMPTOTICSTABILITYOFTHEPOSITIVE
FRACTIONALSYSTEMS
Consider the autonomous fractional positive linear
systemwithdelays
10,)()()(
1
0
q
k
kk
dtxAtxAtx
dt
d
(4.1)
where
n
MA
0
,
nn
k
A
and 0
k
d ,
qk ,...,1
.
Definition 4.1. The positive system (4.1) is called
asymptoticallystableif
0)(lim
tx
t
foranyinitialconditions(3.1) (4.2)
Definition 4.2. A vector
n
e
x
is called the
equilibriumpointofthepositiveasymptoticallystable
system (2.2) for
nT
n
tBu
]1...1[1)( if
thefollowingconditionissatisfied
ne
Ax 10
and
q
k
k
AA
0
(4.3)
From(4.3)wehave
ne
Ax 1)(
1
(4.4)
sinceforasymptoticallystablesystem(2.2)thematrix
Aisinvertibleandtheinversematrix
nn
A
1
)(
[16].
213
Theorem 4.1. The positive fractional system with
delay(4.1)isasymptoticallystableifandonlyifthere
existsastrictlypositivevector
n
suchthat
0
A (4.5)
Proof.Firstweshallshowthatifthepositivesystem
(4.1)isasymptoticallystablethenthereexistsastrictly
positivevector
0
satisfying(4.5).Ifthepositive
system (4.1) is a asymptotically stable then the
equilibriumpoint(4.4)isastrictlypositivevectorand
we can choose
ne
Ax 1)(
1
. This vector
satisfiesthecondition(4.5)since
nn
AAA 11
1
(4.6)
Nowweshallshowthatthepositivesystem(4.1)
isasymptoticallystableifthereexistsstrictlypositive
vector λ satisfying (4.5). It is wellknown that the
positive system (4.1) is asymptotically stable if and
onlyifthecorrespondingtransposesystem
q
k
k
T
k
T
dtxAtxAtx
dt
d
1
0
)()()(
(Tdenotesthetranspose) (4.7)
isasymptoticallystable.AscandidateforaLyapunov
function for the positive system (4.7) we chose the
function
q
k
k
t
dt
TT
AdxtxtxV
k
1
)()()]([
(4.8)
whichispositiveforanynonzero
n
tx
)( , 0t .
Using(4.8)and(4.7)weobtain
AtxAdtxAtx
dtxAtxA
Adx
dt
d
dt
txd
dt
txVd
T
q
k
kk
T
k
T
T
q
k
k
T
k
T
t
dt
T
T
)(])()([
])()([
)(
)()]([
1
1
0
1
(4.9)
If(4.5) holds then from(4.9) we have
0
)]([
dt
txVd
andthesystem(4.1)isasymptoticallystable.□
Theorem 4.2. The positive fractional system with
delay(4.1)isasymptoticallystableifandonlyoneof
thefollowingequivalentconditionsissatisfied:
Thepositivesystemwithoutdelay
1
),()( tAxtx
(4.10)
isasymptoticallystable,
The matrix A is asymptotically stable Metzler
matrix.
Proof. In [20] itwas shown that the positive system
(4.10) is asymptotically stable if and only if there
exists a strictly positive vector
n
such that
(4.5)holds.HencebyTheorem2thepositivesystem
(4.1)isasymptoticallystableifandonlyifthepositive
system (4.10) is asymptotically stable. It is well
known[16]thatthepositivesystem(4.10)(and(4.1))
isasymptoticallystableifandonlyifthematrixAis
asymptotically
stableMetzlermatrix.□
To check the asymptotic stability of the Metzler
matrixAthefollowingtheoremisrecommended[23,
24].
Theorem 4.3. The matrix
nn
A
is a
asymptoticallystableMetzlermatrixifandonlyifone
ofthefollowingequivalentconditionsissatisfied:
all coefficients
10
,...,
n
aa of the characteristic
polynomial
01
1
1
...]det[ asasasAsI
n
n
n
n
(4.11)
arepositive,i.e.
0
i
a ,i=0,1,…,n1,
thediagonalentriesofthematrices
)(k
kn
A
fork=1,…,n1 (4.12)
arenegative,where
]...[
,
,
...
...
...
]...[,
...
...
...
,
...
...
...
)(
1,
)(
1,
)(
1
)(
,1
)(
,1
)(
1
)(
,
)(
1
)(
1
)(
1
)(
,
)(
1,
)(
,1
)(
11
)1(
1,1
)1()1(
)1()(
)0(
1,
)0(
1,
)0(
1
)0(
,1
)0(
,1
)0(
1
)0(
1,1
)0
(
1,1
)0(
1,1
)0(
11
)0(
1
)0(
,
)0(
1
)0(
1
)0(
1
)0(
,
)0(
1,
)0(
,1
)0(
11
)0(
k
knkn
k
kn
k
kn
k
knkn
k
kn
k
kn
k
knkn
k
kn
k
kn
k
kn
k
knkn
k
kn
k
k
n
k
k
knkn
k
kn
k
kn
n
kn
k
kn
nnnn
nn
n
n
nnn
n
n
nnn
nn
nnn
n
n
aac
a
a
b
ac
bA
aa
aa
a
cb
AA
aac
a
a
b
aa
aa
A
ac
bA
aa
aa
AA
(4.13)
for k = 0,1,…,n – 1.
214
the diagonal entries
kk
a
~
of the lower triangular
matrix
nnnn
aaa
aa
a
A
,2,1,
2221
11
~
...
~~
0...
~~
0...0
~
~
are negative, i.e.
0
~
kk
a for nk ,...,1 ; where
A
~
is obtained from A by elementary column
operations[23].
From Theorem 4.2 we have the following
importantcorollary.
Corollary4.1.Theasymptoticstabilityofthepositive
fractional linear systems (4.1) is independent of its
delays.
Theorem 4.4. The positive fractional linear system
(4.1)is unstable if atleast one diagonal
entry of the
MetzlermatrixAisnonnegative.
Theprooffollows immediatelyfromTheorem4.2
andTheoremin[16].
Example4.1.Considerthepositivefractionalsystem
(4.1)withthematrices
2.005.0
1.02.0
,
3.005.0
1.02.0
,
25.0
1
2
10
A
A
a
A
(4.14)
andarbitrarydelay
0
k
d ,
2,1k
.Findthevalue
of the parameter a for which the system is
asymptoticallystable.
ByTheorem4.4thepositivefractionalsystem(4.1)
with(4.14)isunstableifthediagonalentry(1,1)ofthe
Metzlermatrix
5.16.0
2.14.0
210
a
AAAA
(4.15)
is nonnegative i.e.
04.0 a . Using the condition
i)ofTheorem4.2weobtain
)32.15.1()1.1(
5.16.0
2.14.0
]det[
2
asas
s
as
AIs
 (4.16)
and the positive fractional system is asymptotically
stableifandonlyifthecoefficientsofthepolynomial
(4.16)arepositive
01.1 a and 032.15.1
a (4.17)
Therefore,thepositivefractionalsystem(4.1)with
(4.14) is asymptotically stable for arbitrary delay
0d if 88.0
5.1
32.1
a .
Thesameresultcanbeobtainedbytheuseofthe
conditionii)andiii)ofTheorem4.3.
5 CONCLUDINGREMARKS
Necessary andsufficient conditionsfor the
asymptotic stability of continuoustimelinear
systemswithdelayshavebeenestablished(Theorem
4.1and4.2).Ithasbeenshownthat:1)The
asymptotic
stability of the positive fractional system is
independent of their delays, 2) The checking of the
asymptoticstabilityofthepositivefractionalsystems
with delays can be reduced to checking of the
asymptotic stability of positive standard linear
systems without delays. The considerations can be
also extended for fractional
positive 2D continuous
discretelinearsystemswithdelays.
ACKNOWLEDGMENT
ThisworkwassupportedbyMinistryofScienceand
HigherEducationinPolandunderworkS/WE/1/11.
REFERENCES
[1]Busłowicz M., Robust stability of positive discretetime
linear systems with multiple delays with unity rank
uncertainty structure or nonnegative perturbation
matrices, Bull. Pol. Acad. Techn. Sci.Vol. 55, No. 1,
2007,347350.
[2]Busłowicz M., Simple stability conditions for linear
positive discretetime systems with
delays, Bull. Pol.
Acad.Techn.Sci.Vol.50,No. 4,2008.
[3]Busłowicz M., Robust stability of dynamical linear
stationarysystems withdelays, PublishingDepartment
of Technical University of Białystok, Warszawa
Białystok2000,(inPolish).
[4]BusłowiczM.,Robuststabilityofscalarpositivediscrete
time linear
systems with delays, Proc. Int. Conf. on
Power Electronics and Intelligent Control, Warszawa
2005,Paper163(onCDROM).
[5]BusłowiczM.,Stabilityofpositivesingulardiscretetime
system with unit delay with canonical forms of state
matrices, Proc. 12
th
IEEE int. Conf. on Methods and
Models in Automation and Robotics, Międzyzdroje
2006,pp.215218.
[6]Bysłowicz M., Robust stability of positive discretetime
linearsystemswithmultipledelayswithlinearunitrank
uncertainty structure or nonnegative perturbation
matrices,Bull.OfPol.Acad.ofSci., Tech.
Sci.,Vol.52,
No.2,2004,pp.99102.
[7]Busłowicz M. and Kaczorek T., Robust stability of
positivediscretetimeintervalsystemswithtimedelays,
Bull.ofPol.Acad.ofSci.,Tech.Sci.,Vol.55,No.1,2007,
pp.15.
[8]Busłowicz M. and Kaczorek T., Stability
and robust
stability of positive discretetime systems with pure
delays,Proc.ofthe10
th
IEEEInt.Conf.onMethodsand
215
Models in Automation and Robotics, Międzyzdroje
2004,Vol.1,pp.105108.
[9]Busłowicz M. and Kaczorek T., Robust stability of
positive discretetime systems with pure delays with
linear unit rank uncertainty structure, Proc. of the 11
th
IEEEInt.Conf.onMethodsandModelsinAutomation
and Robotics, Międzyzdroje 2005, Paper 0169 (on CD
ROM).
[10]Farina L., Rinaldi S., Positive linear systems; Theory
andapplications,J.Wiley,NewYork,2000.
[11]Górecki H., Analysis and synthesis of control systems
withdelays,WNT,Warszawa(1971),(in
Polish).
[12]GóreckiH.,FuksaS.,GrabowskiP.andKorytowskiA.,
Analysis and synthesis of time delay systems, PWN J.
Willey,WarszawaChichester(1989).
[13]GóreckiH.,KorytowskiA.,Advancesinoptimizations
andstabilityanalysisofdynamicalsystems,Publishing
Department of University Mining and Metallurgy,
Kraków(1993).
[14]Hinrichsen D.,
Hgoc P. H. A. and Son N.K., Stability
radiiofpositivehigherorderdifferencesystems,System
&ControlLetters,Vol.49,2003,pp.377388.
[15]HmamedA.,BenzaouiaA.,AitRamiM.andTadeoF.
Positive stabilization of discretetime systems with
unknowndelaysandbounded control, Proc. European
Control
Conference, Kos, Greece, Jul 2007, 56165622
(paperThD07.3).
[16]Kaczorek T., Positive 1D and 2D Systems, Springer
Verlag,London2002.
[17]Kaczorek T., “Stability of positive continuoustime
linearsystemswithdelays”,Bul.Pol.Acad.Sci.Techn.
vol.57.no.4,2009,395398.
[18]KaczorekT.,Stabilityofpositive
discretetimesystems
with timedelays, Proc. 8
th
World Multiconference on
Systemics,CyberneticsandInformatics,OrlandoFlorida
USA,July2004,pp.321324.
[19]KaczorekT.,ChoiceoftheformsofLyapunovfunctions
forpositive2DRoessermodel,Int.J.AppliedMath.And
Comp.Sci.Vol.17(2007),No. 4,pp.471475.
[20]KaczorekT.,Asymptoticstabilityofpositive
1Dand2D
linear systems, Recent Advances in Control and
Automation,Academ.Publ.HouseEXIT2008,pp.4152.
[21]Kaczorek T., Practical stability of positive fractional
discretetimelinearsystems,Bull.Pol.Acad.Techn.Sci.
Vol.56,No.4.
[22]Kaczorek T., Stability tests of positive fractional
continuoustime linear systems
with delays, Proc. 10
th
Inter. Conf. ICANNGA 2011, Springer, Ljubljana,
Slovenia,April2011,305311.
[23]Kaczorek T., New stability tests of positive standard
and fractional systems, Circuits and Systems 2011 (in
press).
[24]Narendra K.S. and Shorten R., “Hurwitzstability of
Metzler matrices”, IEEE Trans. Autom. Contr. vol. 55,
no.6June2010,
14841487.
[25]Niculescu S. I., Delay effects on stability. A robust
controlapproach,SpringerVerlag,London2001.
[26]Twardy M., On the alternative stability criteria for
positive systems, Bull. Pol. Acad. Techn. Sci. Vol. 55,
2007,No.4,pp.385303.