Figure 7. Model of windy coastal environment.
Figure 8. Simulation results of the systems performance in
heavy wind environment.
5 REMARKS
Neuroevolution approach to intelligent agents
training tasks can effectively improve learning
process of simulated helmsman behavior in ship
handling (Łącki 2008). Artificial neural networks
based on NEAT increase complexity of considered
model of ship maneuvering in restricted waters.
Implementation of additional disturbances from
wind in neuroevolutionary system allows simulating
complex behavior of the helmsman in the
environments with much larger state space than it
was possible in a classic state machine learning
algorithms (Łącki 2007). Positive simulation results
of maneuvers in variable wind conditions encourage
to add other input signals to the system, like river
currents, which will be included in future research.
REFERENCES
Braun H. and Weisbrod J. (1993). Evolving Feedforward
Neural Networks. International Conference on Artificial
Neural Networks and Genetic Algorithms, Innsbruck,
Springer-Verlag.
De Nardi R., Togelius J., Holland O. E. and Lucas S. M.
(2006). "Evolution of Neural Networks for Helicopter
Control: Why Modularity Matters." Evolutionary
Computation, 2006. CEC 2006. IEEE Congress on: 1799-
1806.
Filipowicz W., Łącki M. and Szłapczyńska J. (2006).
"Multicriteria Decision Support for Vessels Routing."
Archives of Transport 17: 71-83.
Fossen T., I. (2011). Handbook of marine craft hydrodynamics
and motion control, John Wiley & Sons, Ltd.
Janghel R. R., Tiwari R., Kala R. and Shukla A. (2012).
"Breast Cancer Data Prediction by Dimensionality
Reduction Using PCA and Adaptive Neuro Evolution."
IJISSC 3(1): 1-9.
Kaelbling L. P., Littman M. L. and Moore A. W. (1996).
"Reinforcement Learning: A Survey." Journal of Artificial
Intelligence Research cs.AI/9605: 237-285.
Kappatos V. A., Georgoulas G., Stylios C. D. and Dermatas E.
S. (2009). Evolutionary dimensionality reduction for crack
localization in ship structures using a hybrid computational
intelligent approach. Proceedings of the 2009 international
joint conference on Neural Networks. Atlanta, Georgia,
USA, IEEE Press: 1907-1914.
Kenneth O. S., Bryant B. D. and Risto M. (2005). "Real-time
neuroevolution in the NERO video game." IEEE
Transactions on Evolutionary Computation 9(6): 653-668.
Kenneth O. S. and Risto M. (2002a). Efficient evolution of
neural network topologies. Proceedings of the Evolutionary
Computation on 2002. CEC '02. Proceedings of the 2002
Congress - Volume 02, IEEE Computer Society: 1757-
1762.
Kenneth O. S. and Risto M. (2002b). Efficient Reinforcement
Learning Through Evolving Neural Network Topologies.
Proceedings of the Genetic and Evolutionary Computation
Conference, Morgan Kaufmann Publishers Inc.: 569-577.
Larkin D., Kinane A. and O'Connor N. (2006). Towards
hardware acceleration of neuroevolution for multimedia
processing applications on mobile devices. Proceedings of
the 13th international conference on Neural information
processing - Volume Part III. Hong Kong, China, Springer-
Verlag: 1178-1188.
Łącki M. (2007). Machine Learning Algorithms in Decision
Making Support in Ship Handling. TST, Katowice-Ustroń,
WKŁ.
Łącki M. (2008). Neuroevolutionary approach towards ship
handling. TST, Katowice-Ustroń, WKŁ.
Łącki M. (2010a). "Model środowiska wieloagentowego w
neuroewolucyjnym sterowaniu statkiem." Zeszty Naukowe
Akademii Morskiej w Gdyni 67: 31-37.
Łącki M. (2010b). "Wyznaczanie punktów trasy w
neuroewolucyjnym sterowaniu statkiem." Logistyka 6.
Łącki M. (2010c) Speciation of Population in
Neuroevolutionary Ship Handling. TransNav - International
Journal on Marine Navigation and Safety of Sea
Transportation, 4(2), 211-216
Ratuszniak P. (2012). "Processor array design with the use a
genetic algorithm." Lecture Notes in Computer Science
7116.
Siebel N. T. and Sommer G. (2007). "Evolutionary
reinforcement learning of artificial neural networks."
International Journal of Hybrid Intelligent Systems -
Hybridization of Intelligent Systems 4(3): 171-183.
Sutton R. and Barto A. (1998). Reinforcement Learning: An
Introduction, The MIT Press.
Tesauro G. (1995). "Temporal difference learning and TD-
Gammon." Communications of the ACM 38(3): 58-68
458