
260 
 
Figure 10. Example of an environment with simultaneous mul-
tirole population of helmsman. 
The second model consist a small number of dif-
ferent vessels in the same restricted waters with 
helmsmen as the best trained agents for particular 
ships (Fig. 11). In this case every helmsman has dif-
ferent goal and different environmental situation, 
depending on actions taken by other helmsmen on 
the other vessels. 
 
Figure 11. Example of multi-task multi-agent environment. 
There are four agents allocated on four vessels. Starting points 
of the vessels are indicated with black outlines while goals for 
them are marked with white ones. 
4  REMARKS 
Neuroevolution approach to intelligent agents train-
ing tasks can effectively improve learning process of 
simulated helmsman behavior in ship handling 
(Łącki 2008). Neural  networks based on NEAT in-
crease complexity of considered model of ship ma-
neuvering in restricted waters.  
Implementation of multirole division of helms-
men population in neuroevolutionary system allows 
simulating complex agents’ behavior in the envi-
ronments with much larger state space than it was 
possible in a classic state machine learning algo-
rithms  (Łącki  2007). In this system it is also very 
important to change parameters of genetic opera-
tions dynamically as well as the input signals vector 
and set of available actions. 
REFERENCES 
Beyer, H.-G. & Schwefel, P. H. 2002. Evolution strategies – A 
comprehensive  introduction. Natural Computing, 1(1):3–
52. 
Braun, H. & Weisbrod, J. 1993. Evolving feedforward neural 
networks. Proceedings of ANNGA93, International Confer-
ence on Artificial Neural Networks and Genetic Algo-
rithms. Berlin: Springer. 
Chu T. C., Lin Y. C. 2003. A Fuzzy TOPSIS Method for Robot 
Selection, the International Journal of Advanced Manufac-
turing Technology: 284-290, 
Filipowicz, W., Łącki, M. & Szłapczyńska, J. 2005, Multicrite-
ria decision support for vessels routing,  Proceedings of 
ESREL’05 Conference. 
Kaelbling, L. P., Littman & Moore. 1996. Reinforcement 
Learning: A Survey. 
Kenneth, O.S., & Miikkulainen, R. 2002. Efficient Evolution of 
Neural Network Topologies, Proceedings of the 2002 Con-
gress on Evolutionary Computation, Piscataway. 
Kenneth, O.S. & Miikkulainen R. 2005. Real-Time Neuroevo-
lution in the NERO Video Game, Proceedings of the IEEE 
2005 Symposium on Computational Intelligence  and 
Games, Piscataway. 
Łącki,  M.  2007  Machine  Learning  Algorithms  in  Decision 
Making Support in Ship Handling, Proceedings of TST 
Conference, Katowice-Ustroń, WKŁ.  
Łącki,  M.  2008,  Neuroevolutionary approach towards ship 
handling, Proceedings of TST Conference, Katowice-
Ustroń, WKŁ.  
Łącki, M. 2009a, Speciation of population in neuroevolution-
ary ship handling, Marine Navigation and Safety of Sea 
Transportation, CRC Press/Balkema, Taylor & Francis 
Group, Boca Raton – London - New York - Leiden, p. 541-
545. 
Łącki,  M. 2009b,  Ewolucyjne  sieci  NEAT  w  sterowaniu  stat-
kiem,  Inżynieria  Wiedzy  i  Systemy  Ekspertowe,  Akade-
micka Oficyna Wydawnicza EXIT, Warszawa, p. 535-544. 
Łącki,  M.  2010a,  Wyznaczanie punktów trasy w neuroewolu-
cyjnym sterowaniu statkiem. Logistyka, No 6. 
Łącki, M. 2010b,  Model  środowiska wieloagentowego w neu-
roewolucyjnym  sterowaniu  statkiem. Zeszyty Naukowe 
Akademii Morskiej w Gdyni, No 67, p. 31-37. 
Spears, W. 1995. Speciation using tag bits. Handbook of Evo-
lutionary Computation. IOP Publishing Ltd. and Oxford 
University Press. 
Stanley, K. O. & Miikkulainen, R. 2002. Efficient reinforce-
ment learning through evolving neural network topologies. 
Proceedings of the Genetic and Evolutionary Computation. 
Conference (GECCO-2002). San Francisco, CA: Morgan 
Kaufmann. 
Stanley, K. O. & Miikkulainen, R. 2005. Real-Time Neuroevo-
lution in the NERO Video Game, Proceedings of the IEEE 
2005 Symposium on Computational Intelligence and 
Games, Piscataway. 
Sutton, R. 1996. Generalization  in  Reinforcement  Learning: 
Successful  Examples  Using  Sparse  Coarse  Coding. 
Touretzky, D., Mozer, M., & Hasselmo, M. (Eds.), Neural 
Information Processing Systems 8. 
Sutton, R. & Barto, A. 1998. Reinforcement Learning: An In-
troduction. 
Tesauro, G. 1995. Temporal  Difference  Learning  and  TD-
Gammon, Communications of the Association for Compu-
ting Machinery, vol. 38, No. 3.