260
Figure 10. Example of an environment with simultaneous mul-
tirole population of helmsman.
The second model consist a small number of dif-
ferent vessels in the same restricted waters with
helmsmen as the best trained agents for particular
ships (Fig. 11). In this case every helmsman has dif-
ferent goal and different environmental situation,
depending on actions taken by other helmsmen on
the other vessels.
Figure 11. Example of multi-task multi-agent environment.
There are four agents allocated on four vessels. Starting points
of the vessels are indicated with black outlines while goals for
them are marked with white ones.
4 REMARKS
Neuroevolution approach to intelligent agents train-
ing tasks can effectively improve learning process of
simulated helmsman behavior in ship handling
(Łącki 2008). Neural networks based on NEAT in-
crease complexity of considered model of ship ma-
neuvering in restricted waters.
Implementation of multirole division of helms-
men population in neuroevolutionary system allows
simulating complex agents’ behavior in the envi-
ronments with much larger state space than it was
possible in a classic state machine learning algo-
rithms (Łącki 2007). In this system it is also very
important to change parameters of genetic opera-
tions dynamically as well as the input signals vector
and set of available actions.
REFERENCES
Beyer, H.-G. & Schwefel, P. H. 2002. Evolution strategies – A
comprehensive introduction. Natural Computing, 1(1):3–
52.
Braun, H. & Weisbrod, J. 1993. Evolving feedforward neural
networks. Proceedings of ANNGA93, International Confer-
ence on Artificial Neural Networks and Genetic Algo-
rithms. Berlin: Springer.
Chu T. C., Lin Y. C. 2003. A Fuzzy TOPSIS Method for Robot
Selection, the International Journal of Advanced Manufac-
turing Technology: 284-290,
Filipowicz, W., Łącki, M. & Szłapczyńska, J. 2005, Multicrite-
ria decision support for vessels routing, Proceedings of
ESREL’05 Conference.
Kaelbling, L. P., Littman & Moore. 1996. Reinforcement
Learning: A Survey.
Kenneth, O.S., & Miikkulainen, R. 2002. Efficient Evolution of
Neural Network Topologies, Proceedings of the 2002 Con-
gress on Evolutionary Computation, Piscataway.
Kenneth, O.S. & Miikkulainen R. 2005. Real-Time Neuroevo-
lution in the NERO Video Game, Proceedings of the IEEE
2005 Symposium on Computational Intelligence and
Games, Piscataway.
Łącki, M. 2007 Machine Learning Algorithms in Decision
Making Support in Ship Handling, Proceedings of TST
Conference, Katowice-Ustroń, WKŁ.
Łącki, M. 2008, Neuroevolutionary approach towards ship
handling, Proceedings of TST Conference, Katowice-
Ustroń, WKŁ.
Łącki, M. 2009a, Speciation of population in neuroevolution-
ary ship handling, Marine Navigation and Safety of Sea
Transportation, CRC Press/Balkema, Taylor & Francis
Group, Boca Raton – London - New York - Leiden, p. 541-
545.
Łącki, M. 2009b, Ewolucyjne sieci NEAT w sterowaniu stat-
kiem, Inżynieria Wiedzy i Systemy Ekspertowe, Akade-
micka Oficyna Wydawnicza EXIT, Warszawa, p. 535-544.
Łącki, M. 2010a, Wyznaczanie punktów trasy w neuroewolu-
cyjnym sterowaniu statkiem. Logistyka, No 6.
Łącki, M. 2010b, Model środowiska wieloagentowego w neu-
roewolucyjnym sterowaniu statkiem. Zeszyty Naukowe
Akademii Morskiej w Gdyni, No 67, p. 31-37.
Spears, W. 1995. Speciation using tag bits. Handbook of Evo-
lutionary Computation. IOP Publishing Ltd. and Oxford
University Press.
Stanley, K. O. & Miikkulainen, R. 2002. Efficient reinforce-
ment learning through evolving neural network topologies.
Proceedings of the Genetic and Evolutionary Computation.
Conference (GECCO-2002). San Francisco, CA: Morgan
Kaufmann.
Stanley, K. O. & Miikkulainen, R. 2005. Real-Time Neuroevo-
lution in the NERO Video Game, Proceedings of the IEEE
2005 Symposium on Computational Intelligence and
Games, Piscataway.
Sutton, R. 1996. Generalization in Reinforcement Learning:
Successful Examples Using Sparse Coarse Coding.
Touretzky, D., Mozer, M., & Hasselmo, M. (Eds.), Neural
Information Processing Systems 8.
Sutton, R. & Barto, A. 1998. Reinforcement Learning: An In-
troduction.
Tesauro, G. 1995. Temporal Difference Learning and TD-
Gammon, Communications of the Association for Compu-
ting Machinery, vol. 38, No. 3.