226
According to matrix (4) we have
1
1
1
1
4441
343231
242321
1312
=+
=++
=++
=+
pp
ppp
ppp
pp
(5)
Using the total probability and memoryless prop-
erty of Markov chains we obtain the Chapman
Kolmogorov equations
{ }
.0,4,3,2,1,
),(),(),(
nmji
nkmkpmkkpnkkp
r
rkirij
≤≤∈
++⋅+=+
∑
(6)
If it is an irreducible non periodic Markov chain
consisting of positive recurrent states then a unique
stationary state probability vector π exists
⋅=
4
3
2
1
π
π
π
π
(7)
where:
−
- is a steady state probability, k = 1,2,3,4;
and the matrix equation for vector π is given by
=
⋅
−
−
−
1
0
0
0
1111
01
01
1
4
3
2
1
2313
3212
413121
π
π
π
π
pp
pp
ppp
(8)
where:
−
jk
- is a transition probability from state j to
state k, j,k=1,2,3,4.
If the condition
0
1111
01
01
1
det
2313
3212
413121
≠⋅
−
−
−
pp
pp
ppp
(9)
is satisfied, then the solution is given by
))(())(()1)(1(
)1(
41311323124121123213322341
3223
1
ppppppppppppp
pp
−++−++−+
−
=
π
))(())(()1)(1(
41311323124121123213322341
321312
2
ppppppppppppp
−++−++−+
=
))(())(()1)(1(
41311323124121123213322341
231213
3
ppppppppppppp
ppp
−++−++−+
−−
=
π
)pp)(ppp()pp)(ppp()1pp)(p1(
1pppppppppppp
41311323124121123213322341
122132231331312312133221
4
−++−++−+
−++++
=
π
If transition probabilities are equal to p, then
;
;
;
(10)
Figure 29 Graf of tendency of stationary state changes for in-
creasing p
4 CONCLUSIONS
Vessel safety assessment carried out upon IMO
standards allows theoretical estimating of safety
without actual vessel conditions details and condi-
tion of crew. For more sophisticated cognitive mod-
eling is necessary to model numerous failure modes
or represent complex interdependencies between
human error sources, ship route, ship technical and
exploitations parameters. An alternative to repre-
senting the seaman as an element of a ship system is
to represent him as a subsystem in and of itself. It
means that the seaman should be modeled autono-
mously.
REFERENCES
Soares C.G.; Teixeira A.P. 2001, Risk assessment in maritime
transportation, Reliability Engineering and System Safety,
Volume 74, Number 3, December 2001 , pp. 299-309(11)
Elsevier
Clemens P. L. 2002. Human Factors and Operator Errors, JA-
COBS SVERDRUP, February 2002.
Lawton C. R., Miller D. P., Campbell J. E., 2005 Human Per-
formance Modeling for System of Systems Analytics: Sol-
dierFatigue, SAND REPORT, SAND2005-6569, Unlimited
Release,Printed October 2005,
Gucma L., 2005. Modelowanie ryzyka zderzenia jednostek
pływających z konstrukcjami portowymi i pełnomorskimi,
Studia nr.44 AkademiaMorska w Szczecinie, Szczecin
2005.
Pietrzykowski Z. 2007. Assessment of navigational safety in
vessel traffic in an open area, Proc. TransNav 2007.
Smolarek L. & Soliwoda J., 2008, Human Fatigue Model at
MaritimeTransport, Proceedings of ESREL 2008 Confer-
ence.
Smolarek L., 2008. Human Reliability at Ship Safety Consid-
eration, Journal of KONBiN 2(5)2008, pp191-206.
Soliwoda J., 2008. Factors Determining Vessel Safety Assess-
ment in Operation, Journal of KONBiN 2(5)2008, pp. 239-
254.
Wang Wuhong, Zhang Dianye, Cao Qi. Reliability analysis of
human error identification in man-machine systems. System
Engineering and Electronical Technology, 1997, (3):76-79
π1
π2
π3
π4