803
marine fuel conversion from diesel oil to natural gas for
container ships, Environ. Sci. Pollut. Res. 28 (2021)
15210–15222. https://doi.org/10.1007/s11356-020-11639-6.
Al-Enazi, A., Okonkwo, E. C., Biçer, Y., & Al‐Ansari, T.
(2021). A review of cleaner alternative fuels for maritime
transportation. Energy Reports, 7, 1962 – 1985.
https://doi.org/10.1016/j.egyr.2021.03.036
Alqarni, D. S., Lee, C. W., Knowles, G. P., Vogt, C., Marshall,
M., Gengenbach, T. R., & Chaffee, A. L. (2021). Ru-
zirconia catalyst derived from MIL140C for carbon
dioxide conversion to methane. Catalysis Today, 371,
120–133. https://doi.org/10.1016/j.cattod.2020.07.080
Ammar, N. R., & Seddiek, I. S. (2020). Enhancing energy
efficiency for new generations of containerized shipping.
Ocean Engineering, 215, 107887.
https://doi.org/10.1016/j.oceaneng.2020.107887
Brouček, J. (2014). Production of Methane Emissions from
Ruminant Husbandry: A Review. Journal of
Environmental Protection, 05(15), 1482–1493.
https://doi.org/10.4236/jep.2014.515141
Chow, W. L., Chong, S., Lim, J. W., Chan, Y. J., Chong, M. F.,
Tiong, T. J., Chin, J. K., & Pan, G. T. (2020). Anaerobic
Co-Digestion of Wastewater sludge: A review of
potential Co-Substrates and operating factors for
improved methane yield. Processes, 8(1), 39.
https://doi.org/10.3390/pr8010039
Elmallah, M., Elgohary, M. M., & Shouman, M. R. (2023).
The effect of air chamber geometrical design for
enhancing the output power of oscillating water column
wave energy converter. Marine Technology Society
Journal, 57(1), 122–129.
https://doi.org/10.4031/mtsj.57.1.14
Fazlollahi, S., & Maréchal, F. (2013). Multi-objective, multi-
period optimization of biomass conversion technologies
using evolutionary algorithms and mixed integer linear
programming (MILP). Applied Thermal Engineering,
50(2), 1504–1513.
https://doi.org/10.1016/j.applthermaleng.2011.11.035
Fazlollahi, S., Mandel, P., Becker, G., & Maréchal, F. (2012).
Methods for multi-objective investment and operating
optimization of complex energy systems. Energy, 45(1),
12–22. https://doi.org/10.1016/j.energy.2012.02.046
Grove, H., & Clouse, M. (2021). Zero net emissions goals:
Challenges for boards. Corporate Board: Role, Duties &
Composition, 17(2), 54–69.
https://doi.org/10.22495/cbv17i2art5
Huan, T., Fan, H., Lei, W., & Guo-Qiang, Z. (2019). Options
and evaluations on propulsion systems of LNG carriers.
In IntechOpen eBooks.
https://doi.org/10.5772/intechopen.82154
Hussin, F., & Aroua, M. K. (2020). Recent trends in the
development of adsorption technologies for carbon
dioxide capture: A brief literature and patent reviews
(2014–2018). Journal of Cleaner Production, 253, 119707.
https://doi.org/10.1016/j.jclepro.2019.119707
Hwangbo, S., Lee, I., & Han, J. (2017). Mathematical model
to optimize design of integrated utility supply network
and future global hydrogen supply network under
demand uncertainty. Applied Energy, 195, 257–267.
https://doi.org/10.1016/j.apenergy.2017.03.041
IPCC: Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on
Climate Change, Cambridge University Press,
Cambridge, 2021.
Jeffry, L., Ong, M. Y., Nomanbhay, S., Mofijur, M.,
Mubashir, M., & Show, P. L. (2021). Greenhouse gases
utilization: A review. Fuel, 301, 121017.
https://doi.org/10.1016/j.fuel.2021.121017
Joung, T., Kang, S., Lee, J., & Ahn, J. (2020). The IMO initial
strategy for reducing Greenhouse Gas (GHG) emissions,
and its follow-up actions towards 2050. Journal of
International Maritime Safety, Environmental Affairs,
and Shipping, 4(1), 1–7.
https://doi.org/10.1080/25725084.2019.1707938
Króliczewska, B., Pecka-Kiełb, E., & Bujok, J. (2023).
Strategies Used to Reduce Methane Emissions from
Ruminants: Controversies and Issues. Agriculture, 13(3),
602. https://doi.org/10.3390/agriculture13030602
Kumari, S., Dahiya, R., Naik, S., Hiloidhari, M., Thakur, I. S.,
Sharawat, I., & Kumari, N. (2016). Projection of methane
emissions from livestock through enteric fermentation:
A case study from India. Environmental Development,
20, 31–44. https://doi.org/10.1016/j.envdev.2016.08.001
Lindstad, E., Lagemann, B., Rialland, A., Gamlem, G. M., &
Valland, A. (2021). Reduction of maritime GHG
emissions and the potential role of E-fuels.
Transportation Research Part D: Transport and
Environment, 101, 103075.
https://doi.org/10.1016/j.trd.2021.103075
Liu, D., Guo, X., & Xiao, B. (2019). What causes growth of
global greenhouse gas emissions? Evidence from 40
countries. Science of the Total Environment, 661, 750–
766. https://doi.org/10.1016/j.scitotenv.2019.01.197.
Mar, K. A., Unger, C., Walderdorff, L., & Butler, T. (2022).
Beyond CO2 equivalence: The impacts of methane on
climate, ecosystems, and health. Environmental Science
& Policy, 134, 127–136.
https://doi.org/10.1016/j.envsci.2022.03.027
Meinshausen, M., Meinshausen, N., Hare, B., Raper, S. C. B.,
Frieler, K., Knutti, R., Frame, D. J., & Allen, M. (2009).
Greenhouse-gas emission targets for limiting global
warming to 2 °C. Nature, 458(7242), 1158–1162.
https://doi.org/10.1038/nature08017.
Mikhaylov, A., Moiseev, N., Алешин, К. А., & Burkhardt,
T. (2020). Global climate change and greenhouse effect.
Entrepreneurship and Sustainability Issues, 7(4), 2897–
2913. https://doi.org/10.9770/jesi.2020.7.4(21.
Mundra, I., & Lockley, A. (2023). Emergent methane
mitigation and removal approaches: A review.
Atmospheric Environment: X, 100223.
https://doi.org/10.1016/j.aeaoa.2023.100223
Rehmatulla, N., Calleya, J., & Smith, T. (2017). The
implementation of technical energy efficiency and CO2
emission reduction measures in shipping. Ocean
Engineering, 139, 184–197.
https://doi.org/10.1016/j.oceaneng.2017.04.029
Reisinger, A., Clark, H., Cowie, A., Emmet ‐ Booth, J.,
Fischer, C. G., Herrero, M., Howden, M., & Leahy, S. C.
(2021). How necessary and feasible are reductions of
methane emissions from livestock to support stringent
temperature goals? Philosophical Transactions of the
Royal Society A, 379(2210), 20200452.
https://doi.org/10.1098/rsta.2020.0452
Revell, L. E., Stenke, A., Rozanov, E., Ball, W. T., Lossow, S.,
& Peter, T. (2016). The role of methane in projections of
21st century stratospheric water vapour. Atmospheric
Chemistry and Physics, 16(20), 13067–13080.
https://doi.org/10.5194/acp-16-13067-2016
Sangaiah, A. K., Tirkolaee, E. B., Goli, A., & Dehnavi-Arani,
S. (2019). Robust optimization and mixed-integer linear
programming model for LNG supply chain planning
problem. Soft Computing, 24(11), 7885–7905.
https://doi.org/10.1007/s00500-019-04010-6
Santos, V. a. D., Da Silva, P. P., & Serrano, L. (2022). The
maritime sector and its problematic decarbonization: A
Systematic review of the contribution of alternative
fuels. Energies, 15(10), 3571.
https://doi.org/10.3390/en15103571
Serra, P., & Fancello, G. (2020). Towards the IMO’s GHG
goals: A critical overview of the perspectives and
challenges of the main options for decarbonizing
international shipping. Sustainability, 12(8), 3220.
https://doi.org/10.3390/su12083220
Thorpe, A. (2008). Enteric fermentation and ruminant
eructation: the role (and control?) of methane in the
climate change debate. Climatic Change, 93(3–4), 407–
431. https://doi.org/10.1007/s10584-008-9506-x
Xing, H., Spence, S., & Chen, H. (2020). A comprehensive
review on countermeasures for CO2 emissions from