423
4
CONCLUSIONS
This study focused on analyzing the anti‐fouling
properties of a titanium‐based ceramic coating and
comparing it with a reference antifouling paint
coating. Following a span of four years within a
natural environment that fostered evolution and
biological diversification of species, the behavior of
bothcoatingswasexamined,and
theextentofbiofilm
buildupwasquantified.Theresults showedthatthe
ceramic coating exhibited excellent properties in
preventing biological adherence. The properties that
influence the biofouling resistance of the ceramic
coating include its roughness, which impedes initial
adhesionandpromotesthedetachmentofbiofouling
communities, furthermore, the contact angle
of the
coating also plays a role, as a hydrophilic surface
hinders the initial adhesion of biofouling. While the
contact angle loses its impact once the initial
settlementoforganismshasoccurred,thedetachment
ofthebiofouling,resultingfromthelowroughnessof
thesurface,re‐establishestherelevanceofthe
contact
angle, thereby establishing a direct relationship
between both parameters. The antifouling and
anticorrosivefunctionalityofceramiccoatingsisalso
based on diverse AF additives to reject biofouling
adhesion,inthissense,titaniumhasshownexcellent
behavior.
Inaddition,aclearcorrelation hasbeenobserved
betweenseawatertemperatureandbiological
growth
in titanium‐based ceramic coatings, whereas the
development of organismsin the control antifouling
paint was more gradual, with a less pronounced
sensitivity to temperature variations. Upon
completion of the experiment, it was found that the
ceramic coating had achieved a reduction in
biofouling mass increase of 126.76%, 141.85%, and
69.14% as compared to the antifouling paint in the
splashsouthzone,60‐cm‐deepsouthzone,and60‐cm‐
deepnorthzone,respectively.
REFERENCES
[1]Abbas, M., & Shafiee, M. (2020). An overview of
maintenance management strategies for corroded steel
structures in extreme marine environments. Marine
Structures,71,102718.
https://doi.org/10.1016/j.marstruc.2020.102718
[2]Boullosa‐Falces, D., García, S., Sanz, D., Trueba, A., &
Gomez‐Solaetxe,M.A.(2020).CUSUMchartmethodfor
continuous monitoring of antifouling
treatment of
tubular heat exchangers in open‐loopcooling seawater
systems.Biofouling,36(1),73–85.
https://doi.org/10.1080/08927014.2020.1715954
[3]Boullosa‐Falces, D., Gomez‐Solaetxe, M. A., Sanchez‐
Varela,Z.,García,S.,&Trueba,A.(2019).Validationof
CUSUM control chart for biofouling detection in heat
exchangers. Applied Thermal Engineering, 152.
https://doi.org/10.1016/j.applthermaleng.2019.02.009
[4]Boullosa‐
Falces, D., Sanz, D. S., Garcia, S., Trueba‐
Castañeda, L., & Trueba, A. (2022). Predicting tubular
heat exchanger efficiency reduction caused by marine
biofilmadhesionusingCFDsimulations.Biofouling,1–
11.https://doi.org/10.1080/08927014.2022.2110493
[5]Costa, F. C. R., Ricci, B. C., Teodoro, B., Koch, K.,
Drewes, J. E., & Amaral, M. C.
S. (2021). Biofouling in
membrane distillation applications‐a review.
Desalination, 516, 115241.
https://doi.org/10.1016/j.desal.2021.115241
[6]García,S.,&Trueba,A.(2018).InfluenceoftheReynolds
number on the thermal effectiveness of tubular heat
exchanger subjected to electromagnetic field‐based
antifoulingtreatmentinanopenonce‐throughseawater
coolingsystem.AppliedThermalEngineering,
140,531–
541.https://doi.org/10.1016/j.applthermaleng.2018.05.069
[7]García, S., Trueba, A., Boullosa‐Falces, D., Islam, H., &
Guedes Soares, C. (2020). Predicting ship frictional
resistance due to biofouling using Reynolds‐averaged
Navier‐Stokes simulations. Applied Ocean Research,
101.https://doi.org/10.1016/j.apor.2020.102203
[8]Gkatzogiannis,S.,Weinert,J.,Engelhardt,I.,Knoedel,P.,
&Ummenhofer,T.(2019).
Correlationoflaboratoryand
real marine corrosionfor the investigationof corrosion
fatigue behaviour of steel components. International
JournalofFatigue,126,90–102.
https://doi.org/10.1016/j.ijfatigue.2019.04.041
[9]Łatka, L., Pawłowski, L., Winnicki, M., Sokołowski, P.,
Małachowska, A., & Kozerski, S. (2020). Review of
Functionally Graded Thermal Sprayed Coatings.
AppliedSciences,
10(15),5153.
https://doi.org/10.3390/app10155153
[10]Li, H., Xin, L., Zhang, K., Yin, X., & Yu, S. (2022).
Fluorine‐freefabricationofrobustself‐cleaningandanti‐
corrosionsuperhydrophobiccoatingwithphotocatalytic
functionforenhancedanti‐biofoulingproperty.Surface
andCoatingsTechnology,438,128406.
https://doi.org/10.1016/j.surfcoat.2022.128406
[11]Sanz,D.S.,García,S.,Trueba,
A.,Trueba‐Castañeda,L.,
Islam, H., Guedes Soares, C., & Boullosa‐Falces, D.
(2022).Numericanalysisofthebiofoulingimpactonthe
ship resistance with ceramic coating on the hull. In
Trends in Maritime Technology and Engineering
Volume1(pp.443–449).CRCPress.
https://doi.org/10.1201/9781003320272‐49
[12]Sanz,D.S.,Garcia,S.,
Trueba,A.,Vega,L.M.,Trueba‐
Castaneda,L.,&Boullosa‐Falces,D.(2021).Application
of ceramic coatings to minimize the frictional drag
penaltyonships.OCEANS2021:SanDiego–Porto,1–5.
https://doi.org/10.23919/OCEANS44145.2021.9706045
[13]Sanz,D.S.,García,S.,Trueba,L.,&Trueba,A.(2021).
Bioactive Ceramic Coating Solution for
Offshore
Floating Wind Farms. TransNav, the International
Journal on Marine Navigation and Safety of Sea
Transportation,15(2).
[14]Schultz, M. P. (2004). Frictional Resistance of
Antifouling Coating Systems. Journal of Fluids
Engineering,126(6).https://doi.org/10.1115/1.1845552
[15]Trueba, A., Vega, L. M., García, S., Otero, F. M., &
Madariaga,E.(2016).Mitigationof
marinebiofoulingon
tubes of open rack vaporizers using electromagnetic
fields.WaterScienceandTechnology,73(5),1221–1229.
https://doi.org/10.2166/wst.2015.597
[16]Wang,R.,Zhou,T.,Liu,J.,Zhang,X.,Yang,J.,Hu,W.,
& Liu, L. (2021). Designing novel anti ‐biofouling
coatingsontitaniumbased ontheferroelectric‐induced
strategy.Materials&
Design,203,109584.
https://doi.org/10.1016/j.matdes.2021.109584
[17]Xia,D.‐H.,Qin,Z.,Song,S.,Macdonald,D.,&Luo,J.‐L.
(2021).Combatingmarinecorrosiononengineeredoxide
surfacebyrepelling,blockingandcapturingCl−: Amini
review.CorrosionCommunications,2,1–7.
https://doi.org/10.1016/j.corcom.2021.09.001
[18]Yang, Y., Wu, Q., He, Z., Jia, Z., &
Zhang, X. (2019).
Seismic Collapse Performance of Jacket Offshore
Platforms with Time‐Variant Zonal Corrosion Model.
AppliedOceanResearch,84,268–278.
https://doi.org/10.1016/j.apor.2018.11.015
[19]Yi,P.,Jia,H.,Yang,X.,Fan,Y.,Xu,S.,Li,J.,Lv,M.,&
Chang, Y. (2023). Anti‐biofouling properties of TiO
2
coating with coupled effect of photocatalysis and
microstructure. Colloids and Surfaces A: