313
the movement, three different speeds are
programmed, depending on the inclination of the
joystick.Thecontrolunitprogrammeitselfconsistsof
amainfile,asourcefileandalibrary.
Table1.Robotversioncomparison
________________________________________________
VersionI VersionII
________________________________________________
Weight[kg]~1.2 ~3
Obstacleavoidance[s]26 9
Distance30cm[s]40 20
Speedcontrol‐Yes(3speeds)
Numberofprogrammed
commands4 7
Obstacleclimbing[cm]<=0.5 <=4
Suspensionheight[cm]4 0‐9
________________________________________________
The appearance of the robot after the upgrade is
showninthefigure4.
Figure4.Robot
4 CONCLUSIONS
Thearticleisa preludeto futureplannedwork. The
addition of another degree of freedom has greatly
improved the robotʹs locomotion capabilities. It can
now climb over obstacles, change the position of its
torso,andshiftitscentreofgravity.Forthenextwork,
it is planned
to add the possibility of autonomous
movementoftherobotbasedonthevaluesmeasured
by the sensors, so that the robot can independently
reachhard‐to‐reachplaces. Also underconsideration
is the possibility of modifyingthe control system so
that the robotʹs steps are controlled by artificial
intelligencealgorithmsinthefuture.
REFERENCES
[1]P.M. James, Amal Prakash, Virbhadrappa Kalburgi,
PramodSreedharan“Design,analysis,manufacturingof
four‐leggedwalkingrobotwithinsecttypeleg”,Volume
46,Part10,2021,Pages4647‐4652
[2]Virbhadrappa Kalburgi, P.M. James, Pramod
Sreedharan, “Control system design for four‐legged
walkingrobotwithinsecttypelegusingROS”,Volume
46,Part10,2021,Pages5092‐5097
[3]Jun He, Feng Gao, “Type Synthesis for Bionic
Quadruped Walking Robots” Journal of Bionic
Engineering,Volume12,Issue4,2015,Pages527‐538
[4]Anurag Narayan Sarmah, Abhijit Boruah, Daisy Kalita,
Darshana Neog, Saumay Paul, “A Bio‐Inspired
Implementation of Walking and Stair
Climbing on a
Quadruped Robot”, Procedia Computer Science,
Volume143,2018,Pages671‐677
[5]PriyaranjanBiswal,PrasesK.Mohanty, ”Developmentof
quadruped walking robots: A review, Ain Shams
Engineering Journal”, Volume 12, Issue 2, 2021, Pages
2017‐2031.
[6]Zhijun Chen, Jimu Liu, Feng Gao, “Real‐time gait
planning method for
six‐legged robots to optimize the
performancesofterrainadaptabilityandwalkingspeed”
MechanismandMachineTheory,Volume168,2022
[7]Haitao Yu, Haibo Gao, Zongquan Deng, “Enhancing
adaptability with local reactive behaviors for hexapod
walking robot via sensory feedback integrated central
pattern generator” RoboticsandAutonomous Systems,
Volume124,
2020
[8]DominikBelter,PiotrSkrzypczyński,“IntegratedMotion
Planning for a Hexapod Robot Walking on Rough
Terrain,“IFACProceedingsVolumes,Volume44,Issue
1,2011,Pages6918‐6923
[9]Gang Chen, Bo Jin, Ying Chen, “Accurate and robust
body position trajectory trackingof six‐legged walking
robots with nonsingular terminal
sliding mode control
method,“AppliedMathematicalModelling,Volume77,
Part2,2020,Pages1348‐1372
[10]S.Yu. Misyurin, G.V. Kreinin, N.Yu. Nosova, A.P.
Nelubin, “Six‐Legged Walking Robot (Hexabot),
Kinematics, Dynamics and Motion Optimization”,
Procedia Computer Science, Volume 190, 2021, Pages
604‐610
[11]ZhijunChen,FengGao,QiaoSun,
YuanTian,JimuLiu,
Yinan Zhao, “Ball‐on‐plate motion planning for six‐
parallel‐legged robots walking on irregular terrains
using pure haptic information”, Mechanism and
MachineTheory,Volume141,2019,Pages136‐150