
174
the same results for translational sway and heave
displacements,respectively.
Table8.Comparisonofthestatisticalparametersofthe
measurementsbetweenthedevelopedsystemand
Qualisys®systemfortranslationalsurgedisplacement
undertheactionofirregularwaves.
________________________________________________
Surge(mm)System Qualisys® Difference%
________________________________________________
Mean0.942 0.946 0.39%
RMS1.153 1.192 3.27%
StandardDeviation 0.664 0.725 8.40%
Amplitude3.841 4.196 8.47%
________________________________________________
Table9.Comparisonofthestatisticalparametersofthe
measurementsbetweenthedevelopedsystemand
Qualisys®systemfortranslationalswaydisplacement
undertheactionofirregularwaves.
________________________________________________
Sway(mm)System Qualisys® Difference%
________________________________________________
Mean1.742 1.751 0.54%
RMS2.131 2.178 2.17%
StandardDeviation 1.228 1.296 5.22%
Amplitude6.810 7.492 9.10%
________________________________________________
Table10.Comparisonofthestatisticalparametersofthe
measurementsbetweenthedevelopedsystemand
Qualisys®systemfortranslationalheavedisplacement
undertheactionofirregularwaves.
________________________________________________
Heave(mm)System Qualisys® Difference%
________________________________________________
Mean‐0.685‐0.6890.55%
RMS0.842 0.862 2.25%
StandardDeviation 0.491 0.518 5.32%
Amplitude2.883 2.945 2.09%
________________________________________________
Tables 11, 12 and 13 present the statistical
parameters of roll, pitch, and yaw rotational
displacements,respectively.
Table11.Comparisonofthestatisticalparametersofthe
measurementsbetweenthedevelopedsystemand
Qualisys®systemforrollrotationaldisplacementunderthe
actionofirregularwaves.
________________________________________________
Roll(°)System Qualisys® Difference%
________________________________________________
Mean0.065 0.083 21.46%
RMS0.324 0.229 ‐41.45%
StandardDeviation 0.317 0.213 ‐48.59%
Amplitude2.192 1.003 ‐118.56%
________________________________________________
Table12.Comparisonofthestatisticalparametersofthe
measurementsbetweenthedevelopedsystemand
Qualisys®systemforpitchrotationaldisplacementunder
theactionofirregularwaves.
________________________________________________
Pitch(°)System Qualisys® Difference%
________________________________________________
Mean0.012 ‐0.004413.15%
RMS0.210 0.100 ‐109.68%
StandardDeviation 0.210 0.100 ‐109.50%
Amplitude1.385 0.360 ‐284.18%
________________________________________________
Table13.Comparisonofthestatisticalparametersofthe
measurementsbetweenthedevelopedsystemand
Qualisys®systemforyawrotationaldisplacementunder
theactionofirregularwaves.
________________________________________________
Yaw(°)System Qualisys® Difference%
________________________________________________
Mean0.027 0.027 2.86%
RMS0.129 0.136 4.72%
StandardDeviation 0.126 0.133 4.80%
Amplitude0.801 0.753 ‐6.27%
________________________________________________
As inthe scenarioof the simulation with regular
waves, the percentage differences between the
statisticalparameters forthedisplacementsin surge,
sway,heaveandyawpresentrelativelysmallvalues
(lessthan10%),demonstratinggoodagreement.But,
once again, for the rolland pitch displacements, the
percentagedifferencespresentedmuchlarger
values.
In the same way as explained in section 3.1, these
differencesoccurredduetotherelativelysmallvalues
obtained for these displacements in the test carried
out (Scenario 2), lying within a range that the
developedsystemisnotabletomeasureproperly.
3.3 Comparisonbetweentheresultsof
thetwosystems
Thecomparisonbetweentheresultsofthedeveloped
systemand theresults of theQualisys® systemwas
carried out using the Relative Mean Absolute Error
(RMAE)andthecoefficientR².Table14summarizes
theresultsofthesetwointer‐comparisonmethodsfor
both regular and irregular waves, considering
all
measureddisplacements.
Table14.Comparisonoftheresultsofthetranslationaland
rotationaldisplacementsofthemooredvesselunderthe
actionofregularandirregularwaves.
________________________________________________
Displacement RMAE R
2
________________________________________________
Regular Surge(mm) 0.16 0.980
Waves Sway(mm)0.03 0.987
Heave(mm) 0.26 0.860
Roll(°) 0.42 0.790
Pitch(°) 0.76 0.451
Yaw(°) 0.11 0.987
Irregular Surge(mm) 0.13 0.956
Waves Sway(mm)0.18 0.913
Heave(mm) 0.28 0.751
Roll(°) 0.96 0.437
Pitch(°) 1.82
0.043
Yaw(°) 0.36 0.824
________________________________________________
Analyzing Table 14, it is possible to observe that
thepitchdisplacement presents theworst values for
the mathematical methods both in regular and
irregular wave scenarios. The roll displacement also
shows poor results, with RMAE values close to or
above1. Forthe other displacements, the developed
systemshowsresults
closetothemeasurementsmade
bytheQualisys®system.
4 CONCLUSIONS
This work presents the development of a
measurementsystemforthedisplacementofmoored
vessels in physical scale models, which combines
image analysis measurements with inertial sensor
measurements.
For the displacements in surge and sway, the
developedsystemshows
aresultclosertoQualisys®
data, with RMAE values less than 0.18, a result
classifiedasʺExcellentʺaccordingtotheclassification
of Walstra et al. [15]. The heave displacements
presentedRMAE<0.28andyawpresentedRMAE<
0.36, both results classified asʺGoodʺ, according to
[15].Thequalityof
theresultsobtainedforthesefour
displacementscanalsobeverifiedbycomparingthe