
797
Hancza: The Deepest Inland Reservoir in Poland. Pure
Appl. Geophys. 2014, 171, 997–1011.
5. Cao, W.; Wong, M.H. Current Status of Coastal Zone
Issues and Management in China: A Review. Environ.
Int. 2007, 33, 985–992.
6. Cicin-Sain, B.; Knecht, R.W. Integrated Coastal and Ocean
Management: Concepts and Practices, 1st ed.; Island
Press: Washington, DC, USA, 1998.
7. Specht, M.; Specht, C.; Mindykowski, J.; Dąbrowski, P.;
Maśnicki, R.; Makar, A. Geospatial Modeling of the
Tombolo Phenomenon in Sopot Using Integrated
Geodetic and Hydrographic Measurement Methods.
Remote Sens. 2020, 12, 737.
8. Specht, M.; Stateczny, A.; Specht, C.; Widźgowski, S.;
Lewicka, O.; Wiśniewska, M. Concept of an Innovative
Autonomous Unmanned System for Bathymetric
Monitoring of Shallow Waterbodies (INNOBAT
System). Energies 2021, 14, 5370.
9. Lewicka, O.; Specht, M.; Stateczny, A.; Specht, C.; Brčić,
D.; Jugović, A.; Widźgowski, S.; Wiśniewska, M.
Analysis of GNSS, Hydroacoustic and Optoelectronic
Data Integration Methods Used in Hydrography.
Sensors 2021, 21, 7831.
10. Kang, M. Overview of the Applications of
Hydroacoustic Methods in South Korea and Fish
Abundance Estimation Methods. Fish. Aquat. Sci. 2014,
17, 369–376.
11. Makar, A. Determination of USV’s Direction Using
Satellite and Fluxgate Compasses and GNSS-RTK.
Sensors 2022, 22, 7895.
12. Makar, A. Method of Determination of Acoustic Wave
Reflection Points in Geodesic Bathymetric Surveys.
Annu. Navig. 2008, 14, 1–89.
13. Parente, C.; Vallario, A. Interpolation of Single Beam
Echo Sounder Data for 3D Bathymetric Model. Int. J.
Adv. Comput. Sci. Appl. 2019, 10, 6–13.
14. Specht, C.; Specht, M.; Dabrowski, P. Comparative
Analysis of Active Geodetic Networks in Poland. In
Proceedings of the 17th International Multidisciplinary
Scientific GeoConference (SGEM 2017), Albena,
Bulgaria, 27 June–6 July 2017.
15. Wlodarczyk-Sielicka, M.; Stateczny, A. Comparison of
Selected Reduction Methods of Bathymetric Data
Obtained by Multibeam Echosounder. In Proceedings of
the 2016 Baltic Geodetic Congress (BGC 2016), Gdańsk,
Poland, 2–4 June 2016.
16. Kondo, H.; Ura, T. Navigation of an AUV for
Investigation of Underwater Structures. Control Eng.
Pract. 2004, 12, 1551–1559.
17. Noureldin, A.; Karamat, T.B.; Georgy, J. Inertial
Navigation System. In Fundamentals of Inertial
Navigation, Satellite-based Positioning and Their
Integration; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 125–166.
18. Specht, M. Method of Evaluating the Positioning System
Capability for Complying with the Minimum Accuracy
Requirements for the International Hydrographic
Organization Orders. Sensors 2019, 19, 3860.
19. Stateczny, A. Radar Water Level Sensors for Full
Implementation of the River Information Services of
Border and Lower Section of the Oder in Poland. In
Proceedings of the 17th International Radar Symposium
(IRS 2016), Kraków, Poland, 10–12 May 2016.
20. Wehr, A.; Lohr, U. Airborne Laser Scanning—An
Introduction and Overview. ISPRS J. Photogramm.
Remote Sens. 1999, 54, 68–82.
21. Williams, R.; Brasington, J.; Vericat, D.; Hicks, M.;
Labrosse, F.; Neal, M. Chapter Twenty–Monitoring
Braided River Change Using Terrestrial Laser Scanning
and Optical Bathymetric Mapping. In Developments in
Earth Surface Processes; Elsevier: Amsterdam,
Netherlands, 2011; Volume 15, pp. 507–532.
22. Liu, Y.; Wu, Z.; Zhao, D.; Zhou, J.; Shang, J.; Wang, M.;
Zhu, C.; Luo, X. Construction of High-resolution
Bathymetric Dataset for the Mariana Trench. IEEE
Access 2019, 7, 142441–142450.
23. Lubczonek, J.; Kazimierski, W.; Zaniewicz, G.; Lacka, M.
Methodology for Combining Data Acquired by
Unmanned Surface and Aerial Vehicles to Create Digital
Bathymetric Models in Shallow and Ultra-shallow
Waters. Remote Sens. 2022, 14, 105.
24. Masetti, G.; Andersen, O.; Andreasen, N.R.;
Christiansen, P.S.; Cole, M.A.; Harris, J.P.; Langdahl, K.;
Schwenger, L.M.; Sonne, I.B. Denmark’s Depth Model:
Compilation of Bathymetric Data within the Danish
Waters. Geomatics 2022, 2, 486-498.
25. Chief Inspectorate of Environmental Protection.
Assessment of the State of Lake Waterbodies in 2017-
2018 - table. Available online:
http://www.gios.gov.pl/pl/mkoopz/8-pms/99-jeziora
(accessed on 3 February 2023). (In Polish)
26. Kabiri, K. Accuracy Assessment of Near-shore
Bathymetry Information Retrieved from Landsat-8
Imagery. Earth Sci. Inform. 2017, 10, 235–245.
27. Menberu, Z.; Mogesse, B.; Reddythota, D. Evaluation of
Water Quality and Eutrophication Status of Hawassa
Lake Based on Different Water Quality Indices. Appl.
Water Sci. 2021, 11, 61.
28. Specht, C.; Specht, M.; Cywiński, P.; Skóra, M.; Marchel,
Ł.; Szychowski, P. A New Method for Determining the
Territorial Sea Baseline Using an Unmanned,
Hydrographic Surface Vessel. J. Coast. Res. 2019, 35,
925–936.
29. Specht, M.; Specht, C.; Lasota, H.; Cywiński, P.
Assessment of the Steering Precision of a Hydrographic
Unmanned Surface Vessel (USV) along Sounding
Profiles Using a Low-cost Multi-Global Navigation
Satellite System (GNSS) Receiver Supported Autopilot.
Sensors 2019, 19, 3939.
30. Specht, M.; Specht, C.; Szafran, M.; Makar, A.;
Dąbrowski, P.; Lasota, H.; Cywiński, P. The Use of USV
to Develop Navigational and Bathymetric Charts of
Yacht Ports on the Example of National Sailing Centre in
Gdańsk. Remote Sens. 2020, 12, 2585.
31. IHO. IHO Standards for Hydrographic Surveys, 6th ed.;
Special Publication No. 44; IHO: Monaco, Monaco, 2020.
32. Stateczny, A.; Błaszczak-Bąk, W.; Sobieraj-Żłobińska, A.;
Motyl, W.; Wisniewska, M. Methodology for Processing
of 3D Multibeam Sonar Big Data for Comparative
Navigation. Remote Sens. 2019, 11, 2245.
33. Stateczny, A.; Burdziakowski, P.; Najdecka, K.;
Domagalska-Stateczna, B. Accuracy of Trajectory
Tracking Based on Nonlinear Guidance Logic for
Hydrographic Unmanned Surface Vessels. Sensors 2020,
20, 832.
34. Stateczny, A.; Kazimierski, W.; Gronska-Sledz, D.;
Motyl, W. The Empirical Application of Automotive 3D
Radar Sensor for Target Detection for an Autonomous
Surface Vehicle’s Navigation. Remote Sens. 2019, 11,
1156.
35. Kacprzak, M.; Wodziński K. Execution of Photo Mission
by Manned Aircraft and Unmanned Aerial Vehicle.
Transactions of the Institute of Aviation 2016, 2, 130–141.
(In Polish)
36. Witek, M.; Jeziorska, J.; Niedzielski, T. Possibilities of
Using Unmanned Air Photogrammetry to Identify
Anthropogenic Transformations in River Channel.
Landform Analysis 2013, 24, 115–126. (In Polish)
37. Czaplewski, K.; Specht, C. Determination of Coast and
Base Line by GPS Techniques. Navigation and
Hydrography 2002, 14, 137–144.
38. Harley, M.D.; Turner, I.L.; Short, A.D.; Ranasinghe, R.
Assessment and Integration of Conventional, RTK-GPS
and Image-derived Beach Survey Methods for Daily to
Decadal Coastal Monitoring. Coast. Eng. 2011, 58, 194–
205.
39. Specht, C.; Weintrit, A.; Specht, M.; Dąbrowski, P.
Determination of the Territorial Sea Baseline—