630
coordinates of this cell. By selecting a point on the
QU‐diagramwiththecursor, it ispossibletocorrect
the combined Z‐manoeuvre variant obtained by the
computerusingtheWS‐orS‐diagram.
If one combined action is found when the main
engineisinmanoeuvreingmode,the
S‐diagramand
the QW‐diagramare used. If themain engine is not
readytomanoeuvre,theQS‐diagramisapplied.The
S‐diagramcellhasthe colourofthezoneofthetop‐
priority one combined action variant among its
possible variants, the value of the S parameter
of
which is the coordinate of this cell. This diagram
serves to set S
Z with the cursor, to receive the QW‐
diagram corresponding to this value, and to
determineamong possible manoeuvrevariants, with
valueS
ZofparameterS,valuesofQ,Wparametersof
optimumvariant.ForzonesZ
1,Z5theonecombined
actionvariantwiththeminimumvalueW
Sissearched
for.Forotherzonestheoptimalitycriteriaaresimilar
to those used in the selection of combined Z‐
manoeuvre.ThecellofQW‐diagramhasthecolourof
thezoneofonecombinedactionvariant,thevaluesof
S,Q,UparametersofwhichareS
Zandcoordinatesof
thiscell.TheonecombinedactionvariantfoundbyS‐
diagramcanbecorrectedbyQW‐diagram,settingon
it with the cursor a point with suitable coordinates.
Note that usage in maritime navigation the QW‐
diagram in polar coordinates was proposed by E.
Pedersen,andis
coveredinhisworks,inparticular,in
[2].
QS‐diagram cell has the color of the zone of the
one combined action variant, the S, Q parameters
values of which are the coordinates of this cell. The
selectionofanti‐collisionmanoeuvreswiththehelpof
diagramsispresentedin
Section4.
When finding diagrams to select the comeback
manoeuvre,theenumerationmethodisalsoapplied.
Themanoeuvreofthefirsttype(seeFig.2)issearched
bytheS
С‐diagramfortheset angleofapproachtothe
route, and by the S
СQС‐diagram when the range of
thisanglevaluesisgiven.Toselectthemanoeuvreof
thesecondtypetheS
C‐diagramisused.Inthenameof
thediagramsQ
Сistheangleofapproachtotheactive
segmentoftheroute,andS
Cis
the distance from the end of combined Z‐
manoeuvre to the beginning of the comeback
manoeuvre, if this manoeuvre is searched before
theendofcombinedZ‐manoeuvre,
thedistancefromtheownshiplocationatthetime
ofthecomebackmanoeuvrecalculationtoitsstart,
if
thismanoeuvreisselected afterthe completion
ofcombinedZ‐manoeuvre.
In order to assess the quality of selected
manoeuvres visually, it is proposed, along the own
ship trajectory, planned to keep clear, to use special
CPAmarksoftargets at the moment of theirclosest
approachtotheownship.
Thismarkcontains:
the predicted positions of own ship andtargetat
thetimeoftheirclosestapproach;
the base segment of
ˆ
δ
length, beginning at the
predicted target location and pointing to the
predictedownshipplace;
the short segment pointing to the current target
location.
FromCPAmarkitiseasytoestimatethevalueof
theshortestdistancebetweentheownshipandtarget,
foreorafttheown
shipwill cross thetargetcourse.
CPAmarksweredeterminedbynumericalprediction
in accelerated time of future ship positions in 1 s
increments. Rule 8 requires that the effectiveness of
theactiontakentoavoidcollisionwithanothervessel
shall be carefully checked until this vessel is finally
past and
clear. Therefore, in the process of the anti‐
collision manoeuvre execution, it is expedient at a
shorttimeinterval(2min,forexample)tofind,taking
into account the information obtained, the future
minimumdistancesbetweenownshipandtargetson
the own ship path for timely detection of adverse
changesinthesituation.
4 VALIDATIONOFPROPOSEDMETHOD
The proposed method of manoeuvre selection was
validated with the help of a program developed in
Delphi programming language. In this program, the
quantity of targets was limited to 20. Various
simulated encountered situations were resolved in
this program, confirming that the
research goal was
achieved. In the solved tasks, the computer time to
obtainallthediagramsdatadidnotexceed4seconds.
Onesuch task isdescribedbelow,inwhichtheown
shipand9targetsarepower‐drivenvessels.Ownship
andtargetsdataareshowninTables2
and3,whereB
andDarethetargetbearinganddistance.TargetTS
1
is the most dangerous vessel, which the own ship
mustgiveway.
Table2.Ownshipdata
________________________________________________
L K V RZ κ a1 a2 b1 b2
m dg kn cb ‐ cb/min
2
cb/min
3
cb/min2 cb/min
3
________________________________________________
220 345 17,1 3,5 1,0 ‐ 0,93 0,073 0,89 ‐0,78
________________________________________________
Table3.Targetsdata
________________________________________________
TS 1 2 3 4 5 6 7 8 9
________________________________________________
B,dg 36 51 69 326 325 101 27 332 331
D,cb 71,0 73,1 39,3 30,0 43,3 38,8105,7 83,7 144,7
K,dg 258 260 267 88 197 346 194 132 133
V,kn 19,1 16,9 17,3 21,2 8,6 9,7 7,2 9,0 7,2
________________________________________________
The used constraints are presented in Table 4, in
which p is the general notation of the parameter,
regardlessofitstype.
Table4.Parameterlimits
________________________________________________
Para‐ S W Q U η δ τ w q
meter cb kn dg cb cb cb min kn dg
________________________________________________
0 ‐12‐90 0 ‐30 5 ‐ 2,0 16
ˆ
p
50 0 90 70 30 7 15 4,0 30
________________________________________________
TheenumerationstepforSandUwas1cb,forW‐
1kn,andforQ‐2dg.Theinformationpresentation
formisshowninFig.4,where:
chartfield;
indicator of distances between waypoints of the
combinedZ‐manoeuvre;
buttontomemorizethemarkedsupposedchange
ofthetargetmotionparameters;
indicator of the basic data of the selected
manoeuvre(CZMorOCA);